$$$\frac{e^{- t^{2} x^{2}}}{t^{2}}$$$ 关于$$$x$$$的积分

该计算器将求出$$$\frac{e^{- t^{2} x^{2}}}{t^{2}}$$$关于$$$x$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \frac{e^{- t^{2} x^{2}}}{t^{2}}\, dx$$$

解答

$$$c=\frac{1}{t^{2}}$$$$$$f{\left(x \right)} = e^{- t^{2} x^{2}}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$${\color{red}{\int{\frac{e^{- t^{2} x^{2}}}{t^{2}} d x}}} = {\color{red}{\frac{\int{e^{- t^{2} x^{2}} d x}}{t^{2}}}}$$

$$$u=x \left|{t}\right|$$$

$$$du=\left(x \left|{t}\right|\right)^{\prime }dx = \left|{t}\right| dx$$$ (步骤见»),并有$$$dx = \frac{du}{\left|{t}\right|}$$$

因此,

$$\frac{{\color{red}{\int{e^{- t^{2} x^{2}} d x}}}}{t^{2}} = \frac{{\color{red}{\int{\frac{e^{- u^{2}}}{\left|{t}\right|} d u}}}}{t^{2}}$$

$$$c=\frac{1}{\left|{t}\right|}$$$$$$f{\left(u \right)} = e^{- u^{2}}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$

$$\frac{{\color{red}{\int{\frac{e^{- u^{2}}}{\left|{t}\right|} d u}}}}{t^{2}} = \frac{{\color{red}{\frac{\int{e^{- u^{2}} d u}}{\left|{t}\right|}}}}{t^{2}}$$

该积分(误差函数)没有闭式表达式:

$$\frac{{\color{red}{\int{e^{- u^{2}} d u}}}}{t^{2} \left|{t}\right|} = \frac{{\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erf}{\left(u \right)}}{2}\right)}}}{t^{2} \left|{t}\right|}$$

回忆一下 $$$u=x \left|{t}\right|$$$:

$$\frac{\sqrt{\pi} \operatorname{erf}{\left({\color{red}{u}} \right)}}{2 t^{2} \left|{t}\right|} = \frac{\sqrt{\pi} \operatorname{erf}{\left({\color{red}{x \left|{t}\right|}} \right)}}{2 t^{2} \left|{t}\right|}$$

因此,

$$\int{\frac{e^{- t^{2} x^{2}}}{t^{2}} d x} = \frac{\sqrt{\pi} \operatorname{erf}{\left(x \left|{t}\right| \right)}}{2 t^{2} \left|{t}\right|}$$

加上积分常数:

$$\int{\frac{e^{- t^{2} x^{2}}}{t^{2}} d x} = \frac{\sqrt{\pi} \operatorname{erf}{\left(x \left|{t}\right| \right)}}{2 t^{2} \left|{t}\right|}+C$$

答案

$$$\int \frac{e^{- t^{2} x^{2}}}{t^{2}}\, dx = \frac{\sqrt{\pi} \operatorname{erf}{\left(x \left|{t}\right| \right)}}{2 t^{2} \left|{t}\right|} + C$$$A


Please try a new game Rotatly