$$$-1 + \frac{e^{x} - 1}{- x + e^{x}}$$$의 적분
사용자 입력
$$$\int \left(-1 + \frac{e^{x} - 1}{- x + e^{x}}\right)\, dx$$$을(를) 구하시오.
풀이
각 항별로 적분하십시오:
$${\color{red}{\int{\left(-1 + \frac{e^{x} - 1}{- x + e^{x}}\right)d x}}} = {\color{red}{\left(- \int{1 d x} + \int{\frac{e^{x} - 1}{- x + e^{x}} d x}\right)}}$$
상수 법칙 $$$\int c\, dx = c x$$$을 $$$c=1$$$에 적용하십시오:
$$\int{\frac{e^{x} - 1}{- x + e^{x}} d x} - {\color{red}{\int{1 d x}}} = \int{\frac{e^{x} - 1}{- x + e^{x}} d x} - {\color{red}{x}}$$
$$$u=- x + e^{x}$$$라 하자.
그러면 $$$du=\left(- x + e^{x}\right)^{\prime }dx = \left(e^{x} - 1\right) dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$\left(e^{x} - 1\right) dx = du$$$임을 얻습니다.
따라서,
$$- x + {\color{red}{\int{\frac{e^{x} - 1}{- x + e^{x}} d x}}} = - x + {\color{red}{\int{\frac{1}{u} d u}}}$$
$$$\frac{1}{u}$$$의 적분은 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- x + {\color{red}{\int{\frac{1}{u} d u}}} = - x + {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
다음 $$$u=- x + e^{x}$$$을 기억하라:
$$- x + \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = - x + \ln{\left(\left|{{\color{red}{\left(- x + e^{x}\right)}}}\right| \right)}$$
따라서,
$$\int{\left(-1 + \frac{e^{x} - 1}{- x + e^{x}}\right)d x} = - x + \ln{\left(\left|{x - e^{x}}\right| \right)}$$
적분 상수를 추가하세요:
$$\int{\left(-1 + \frac{e^{x} - 1}{- x + e^{x}}\right)d x} = - x + \ln{\left(\left|{x - e^{x}}\right| \right)}+C$$
정답
$$$\int \left(-1 + \frac{e^{x} - 1}{- x + e^{x}}\right)\, dx = \left(- x + \ln\left(\left|{x - e^{x}}\right|\right)\right) + C$$$A