Integrale di $$$-1 + \frac{e^{x} - 1}{- x + e^{x}}$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int \left(-1 + \frac{e^{x} - 1}{- x + e^{x}}\right)\, dx$$$.
Soluzione
Integra termine per termine:
$${\color{red}{\int{\left(-1 + \frac{e^{x} - 1}{- x + e^{x}}\right)d x}}} = {\color{red}{\left(- \int{1 d x} + \int{\frac{e^{x} - 1}{- x + e^{x}} d x}\right)}}$$
Applica la regola della costante $$$\int c\, dx = c x$$$ con $$$c=1$$$:
$$\int{\frac{e^{x} - 1}{- x + e^{x}} d x} - {\color{red}{\int{1 d x}}} = \int{\frac{e^{x} - 1}{- x + e^{x}} d x} - {\color{red}{x}}$$
Sia $$$u=- x + e^{x}$$$.
Quindi $$$du=\left(- x + e^{x}\right)^{\prime }dx = \left(e^{x} - 1\right) dx$$$ (i passaggi si possono vedere »), e si ha che $$$\left(e^{x} - 1\right) dx = du$$$.
L'integrale diventa
$$- x + {\color{red}{\int{\frac{e^{x} - 1}{- x + e^{x}} d x}}} = - x + {\color{red}{\int{\frac{1}{u} d u}}}$$
L'integrale di $$$\frac{1}{u}$$$ è $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- x + {\color{red}{\int{\frac{1}{u} d u}}} = - x + {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
Ricordiamo che $$$u=- x + e^{x}$$$:
$$- x + \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = - x + \ln{\left(\left|{{\color{red}{\left(- x + e^{x}\right)}}}\right| \right)}$$
Pertanto,
$$\int{\left(-1 + \frac{e^{x} - 1}{- x + e^{x}}\right)d x} = - x + \ln{\left(\left|{x - e^{x}}\right| \right)}$$
Aggiungi la costante di integrazione:
$$\int{\left(-1 + \frac{e^{x} - 1}{- x + e^{x}}\right)d x} = - x + \ln{\left(\left|{x - e^{x}}\right| \right)}+C$$
Risposta
$$$\int \left(-1 + \frac{e^{x} - 1}{- x + e^{x}}\right)\, dx = \left(- x + \ln\left(\left|{x - e^{x}}\right|\right)\right) + C$$$A