Integral of $$$-1 + \frac{e^{x} - 1}{- x + e^{x}}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \left(-1 + \frac{e^{x} - 1}{- x + e^{x}}\right)\, dx$$$.
Solution
Integrate term by term:
$${\color{red}{\int{\left(-1 + \frac{e^{x} - 1}{- x + e^{x}}\right)d x}}} = {\color{red}{\left(- \int{1 d x} + \int{\frac{e^{x} - 1}{- x + e^{x}} d x}\right)}}$$
Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=1$$$:
$$\int{\frac{e^{x} - 1}{- x + e^{x}} d x} - {\color{red}{\int{1 d x}}} = \int{\frac{e^{x} - 1}{- x + e^{x}} d x} - {\color{red}{x}}$$
Let $$$u=- x + e^{x}$$$.
Then $$$du=\left(- x + e^{x}\right)^{\prime }dx = \left(e^{x} - 1\right) dx$$$ (steps can be seen »), and we have that $$$\left(e^{x} - 1\right) dx = du$$$.
Thus,
$$- x + {\color{red}{\int{\frac{e^{x} - 1}{- x + e^{x}} d x}}} = - x + {\color{red}{\int{\frac{1}{u} d u}}}$$
The integral of $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- x + {\color{red}{\int{\frac{1}{u} d u}}} = - x + {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
Recall that $$$u=- x + e^{x}$$$:
$$- x + \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = - x + \ln{\left(\left|{{\color{red}{\left(- x + e^{x}\right)}}}\right| \right)}$$
Therefore,
$$\int{\left(-1 + \frac{e^{x} - 1}{- x + e^{x}}\right)d x} = - x + \ln{\left(\left|{x - e^{x}}\right| \right)}$$
Add the constant of integration:
$$\int{\left(-1 + \frac{e^{x} - 1}{- x + e^{x}}\right)d x} = - x + \ln{\left(\left|{x - e^{x}}\right| \right)}+C$$
Answer
$$$\int \left(-1 + \frac{e^{x} - 1}{- x + e^{x}}\right)\, dx = \left(- x + \ln\left(\left|{x - e^{x}}\right|\right)\right) + C$$$A