$$$\frac{\pi x \sin{\left(7 \right)}}{20}$$$의 적분
관련 계산기: 정적분 및 가적분 계산기
사용자 입력
$$$\int \frac{\pi x \sin{\left(7 \right)}}{20}\, dx$$$을(를) 구하시오.
풀이
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=\frac{\pi \sin{\left(7 \right)}}{20}$$$와 $$$f{\left(x \right)} = x$$$에 적용하세요:
$${\color{red}{\int{\frac{\pi x \sin{\left(7 \right)}}{20} d x}}} = {\color{red}{\left(\frac{\pi \sin{\left(7 \right)} \int{x d x}}{20}\right)}}$$
멱법칙($$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=1$$$에 적용합니다:
$$\frac{\pi \sin{\left(7 \right)} {\color{red}{\int{x d x}}}}{20}=\frac{\pi \sin{\left(7 \right)} {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}}{20}=\frac{\pi \sin{\left(7 \right)} {\color{red}{\left(\frac{x^{2}}{2}\right)}}}{20}$$
따라서,
$$\int{\frac{\pi x \sin{\left(7 \right)}}{20} d x} = \frac{\pi x^{2} \sin{\left(7 \right)}}{40}$$
적분 상수를 추가하세요:
$$\int{\frac{\pi x \sin{\left(7 \right)}}{20} d x} = \frac{\pi x^{2} \sin{\left(7 \right)}}{40}+C$$
정답
$$$\int \frac{\pi x \sin{\left(7 \right)}}{20}\, dx = \frac{\pi x^{2} \sin{\left(7 \right)}}{40} + C$$$A