$$$\frac{\pi x \sin{\left(7 \right)}}{20}$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$\frac{\pi x \sin{\left(7 \right)}}{20}$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \frac{\pi x \sin{\left(7 \right)}}{20}\, dx$$$.

Trigonometrik fonksiyonlar argümanı radyan cinsinden bekler. Argümanı derece cinsinden girmek için onu pi/180 ile çarpın; örneğin 45°’yi 45*pi/180 olarak yazın, ya da uygun fonksiyonun sonuna ‘d’ eklenmiş sürümünü kullanın; örneğin sin(45°)’i sind(45) olarak yazın.

Çözüm

Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=\frac{\pi \sin{\left(7 \right)}}{20}$$$ ve $$$f{\left(x \right)} = x$$$ ile uygula:

$${\color{red}{\int{\frac{\pi x \sin{\left(7 \right)}}{20} d x}}} = {\color{red}{\left(\frac{\pi \sin{\left(7 \right)} \int{x d x}}{20}\right)}}$$

Kuvvet kuralını $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=1$$$ ile uygulayın:

$$\frac{\pi \sin{\left(7 \right)} {\color{red}{\int{x d x}}}}{20}=\frac{\pi \sin{\left(7 \right)} {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}}{20}=\frac{\pi \sin{\left(7 \right)} {\color{red}{\left(\frac{x^{2}}{2}\right)}}}{20}$$

Dolayısıyla,

$$\int{\frac{\pi x \sin{\left(7 \right)}}{20} d x} = \frac{\pi x^{2} \sin{\left(7 \right)}}{40}$$

İntegrasyon sabitini ekleyin:

$$\int{\frac{\pi x \sin{\left(7 \right)}}{20} d x} = \frac{\pi x^{2} \sin{\left(7 \right)}}{40}+C$$

Cevap

$$$\int \frac{\pi x \sin{\left(7 \right)}}{20}\, dx = \frac{\pi x^{2} \sin{\left(7 \right)}}{40} + C$$$A


Please try a new game Rotatly