$$$- \frac{24 x}{\left(x - 5\right) \left(x - 3\right)}$$$의 적분

이 계산기는 단계별 풀이와 함께 $$$- \frac{24 x}{\left(x - 5\right) \left(x - 3\right)}$$$의 적분/원시함수를 구합니다.

관련 계산기: 정적분 및 가적분 계산기

$$$dx$$$, $$$dy$$$ 등과 같은 미분요소 없이 작성해 주세요.
자동 감지를 위해 비워 두세요.

계산기가 무언가를 계산하지 못했거나 오류를 발견하셨거나, 제안이나 피드백이 있으시다면 문의해 주세요.

사용자 입력

$$$\int \left(- \frac{24 x}{\left(x - 5\right) \left(x - 3\right)}\right)\, dx$$$을(를) 구하시오.

풀이

상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$$$$c=-24$$$$$$f{\left(x \right)} = \frac{x}{\left(x - 5\right) \left(x - 3\right)}$$$에 적용하세요:

$${\color{red}{\int{\left(- \frac{24 x}{\left(x - 5\right) \left(x - 3\right)}\right)d x}}} = {\color{red}{\left(- 24 \int{\frac{x}{\left(x - 5\right) \left(x - 3\right)} d x}\right)}}$$

부분분수분해를 수행합니다(단계는 »에서 볼 수 있습니다):

$$- 24 {\color{red}{\int{\frac{x}{\left(x - 5\right) \left(x - 3\right)} d x}}} = - 24 {\color{red}{\int{\left(- \frac{3}{2 \left(x - 3\right)} + \frac{5}{2 \left(x - 5\right)}\right)d x}}}$$

각 항별로 적분하십시오:

$$- 24 {\color{red}{\int{\left(- \frac{3}{2 \left(x - 3\right)} + \frac{5}{2 \left(x - 5\right)}\right)d x}}} = - 24 {\color{red}{\left(\int{\frac{5}{2 \left(x - 5\right)} d x} - \int{\frac{3}{2 \left(x - 3\right)} d x}\right)}}$$

상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$$$$c=\frac{3}{2}$$$$$$f{\left(x \right)} = \frac{1}{x - 3}$$$에 적용하세요:

$$- 24 \int{\frac{5}{2 \left(x - 5\right)} d x} + 24 {\color{red}{\int{\frac{3}{2 \left(x - 3\right)} d x}}} = - 24 \int{\frac{5}{2 \left(x - 5\right)} d x} + 24 {\color{red}{\left(\frac{3 \int{\frac{1}{x - 3} d x}}{2}\right)}}$$

$$$u=x - 3$$$라 하자.

그러면 $$$du=\left(x - 3\right)^{\prime }dx = 1 dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = du$$$임을 얻습니다.

따라서,

$$- 24 \int{\frac{5}{2 \left(x - 5\right)} d x} + 36 {\color{red}{\int{\frac{1}{x - 3} d x}}} = - 24 \int{\frac{5}{2 \left(x - 5\right)} d x} + 36 {\color{red}{\int{\frac{1}{u} d u}}}$$

$$$\frac{1}{u}$$$의 적분은 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$- 24 \int{\frac{5}{2 \left(x - 5\right)} d x} + 36 {\color{red}{\int{\frac{1}{u} d u}}} = - 24 \int{\frac{5}{2 \left(x - 5\right)} d x} + 36 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

다음 $$$u=x - 3$$$을 기억하라:

$$36 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} - 24 \int{\frac{5}{2 \left(x - 5\right)} d x} = 36 \ln{\left(\left|{{\color{red}{\left(x - 3\right)}}}\right| \right)} - 24 \int{\frac{5}{2 \left(x - 5\right)} d x}$$

상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$$$$c=\frac{5}{2}$$$$$$f{\left(x \right)} = \frac{1}{x - 5}$$$에 적용하세요:

$$36 \ln{\left(\left|{x - 3}\right| \right)} - 24 {\color{red}{\int{\frac{5}{2 \left(x - 5\right)} d x}}} = 36 \ln{\left(\left|{x - 3}\right| \right)} - 24 {\color{red}{\left(\frac{5 \int{\frac{1}{x - 5} d x}}{2}\right)}}$$

$$$u=x - 5$$$라 하자.

그러면 $$$du=\left(x - 5\right)^{\prime }dx = 1 dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = du$$$임을 얻습니다.

따라서,

$$36 \ln{\left(\left|{x - 3}\right| \right)} - 60 {\color{red}{\int{\frac{1}{x - 5} d x}}} = 36 \ln{\left(\left|{x - 3}\right| \right)} - 60 {\color{red}{\int{\frac{1}{u} d u}}}$$

$$$\frac{1}{u}$$$의 적분은 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$36 \ln{\left(\left|{x - 3}\right| \right)} - 60 {\color{red}{\int{\frac{1}{u} d u}}} = 36 \ln{\left(\left|{x - 3}\right| \right)} - 60 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

다음 $$$u=x - 5$$$을 기억하라:

$$36 \ln{\left(\left|{x - 3}\right| \right)} - 60 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = 36 \ln{\left(\left|{x - 3}\right| \right)} - 60 \ln{\left(\left|{{\color{red}{\left(x - 5\right)}}}\right| \right)}$$

따라서,

$$\int{\left(- \frac{24 x}{\left(x - 5\right) \left(x - 3\right)}\right)d x} = - 60 \ln{\left(\left|{x - 5}\right| \right)} + 36 \ln{\left(\left|{x - 3}\right| \right)}$$

적분 상수를 추가하세요:

$$\int{\left(- \frac{24 x}{\left(x - 5\right) \left(x - 3\right)}\right)d x} = - 60 \ln{\left(\left|{x - 5}\right| \right)} + 36 \ln{\left(\left|{x - 3}\right| \right)}+C$$

정답

$$$\int \left(- \frac{24 x}{\left(x - 5\right) \left(x - 3\right)}\right)\, dx = \left(- 60 \ln\left(\left|{x - 5}\right|\right) + 36 \ln\left(\left|{x - 3}\right|\right)\right) + C$$$A


Please try a new game Rotatly