$$$- \frac{24 x}{\left(x - 5\right) \left(x - 3\right)}$$$の積分

この計算機は、手順を示しながら$$$- \frac{24 x}{\left(x - 5\right) \left(x - 3\right)}$$$の不定積分(原始関数)を求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int \left(- \frac{24 x}{\left(x - 5\right) \left(x - 3\right)}\right)\, dx$$$ を求めよ。

解答

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=-24$$$$$$f{\left(x \right)} = \frac{x}{\left(x - 5\right) \left(x - 3\right)}$$$ に対して適用する:

$${\color{red}{\int{\left(- \frac{24 x}{\left(x - 5\right) \left(x - 3\right)}\right)d x}}} = {\color{red}{\left(- 24 \int{\frac{x}{\left(x - 5\right) \left(x - 3\right)} d x}\right)}}$$

部分分数分解を行う (手順は»で確認できます):

$$- 24 {\color{red}{\int{\frac{x}{\left(x - 5\right) \left(x - 3\right)} d x}}} = - 24 {\color{red}{\int{\left(- \frac{3}{2 \left(x - 3\right)} + \frac{5}{2 \left(x - 5\right)}\right)d x}}}$$

項別に積分せよ:

$$- 24 {\color{red}{\int{\left(- \frac{3}{2 \left(x - 3\right)} + \frac{5}{2 \left(x - 5\right)}\right)d x}}} = - 24 {\color{red}{\left(\int{\frac{5}{2 \left(x - 5\right)} d x} - \int{\frac{3}{2 \left(x - 3\right)} d x}\right)}}$$

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{3}{2}$$$$$$f{\left(x \right)} = \frac{1}{x - 3}$$$ に対して適用する:

$$- 24 \int{\frac{5}{2 \left(x - 5\right)} d x} + 24 {\color{red}{\int{\frac{3}{2 \left(x - 3\right)} d x}}} = - 24 \int{\frac{5}{2 \left(x - 5\right)} d x} + 24 {\color{red}{\left(\frac{3 \int{\frac{1}{x - 3} d x}}{2}\right)}}$$

$$$u=x - 3$$$ とする。

すると $$$du=\left(x - 3\right)^{\prime }dx = 1 dx$$$(手順は»で確認できます)、$$$dx = du$$$ となります。

したがって、

$$- 24 \int{\frac{5}{2 \left(x - 5\right)} d x} + 36 {\color{red}{\int{\frac{1}{x - 3} d x}}} = - 24 \int{\frac{5}{2 \left(x - 5\right)} d x} + 36 {\color{red}{\int{\frac{1}{u} d u}}}$$

$$$\frac{1}{u}$$$ の不定積分は $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$ です:

$$- 24 \int{\frac{5}{2 \left(x - 5\right)} d x} + 36 {\color{red}{\int{\frac{1}{u} d u}}} = - 24 \int{\frac{5}{2 \left(x - 5\right)} d x} + 36 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

次のことを思い出してください $$$u=x - 3$$$:

$$36 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} - 24 \int{\frac{5}{2 \left(x - 5\right)} d x} = 36 \ln{\left(\left|{{\color{red}{\left(x - 3\right)}}}\right| \right)} - 24 \int{\frac{5}{2 \left(x - 5\right)} d x}$$

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{5}{2}$$$$$$f{\left(x \right)} = \frac{1}{x - 5}$$$ に対して適用する:

$$36 \ln{\left(\left|{x - 3}\right| \right)} - 24 {\color{red}{\int{\frac{5}{2 \left(x - 5\right)} d x}}} = 36 \ln{\left(\left|{x - 3}\right| \right)} - 24 {\color{red}{\left(\frac{5 \int{\frac{1}{x - 5} d x}}{2}\right)}}$$

$$$u=x - 5$$$ とする。

すると $$$du=\left(x - 5\right)^{\prime }dx = 1 dx$$$(手順は»で確認できます)、$$$dx = du$$$ となります。

この積分は次のように書き換えられる

$$36 \ln{\left(\left|{x - 3}\right| \right)} - 60 {\color{red}{\int{\frac{1}{x - 5} d x}}} = 36 \ln{\left(\left|{x - 3}\right| \right)} - 60 {\color{red}{\int{\frac{1}{u} d u}}}$$

$$$\frac{1}{u}$$$ の不定積分は $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$ です:

$$36 \ln{\left(\left|{x - 3}\right| \right)} - 60 {\color{red}{\int{\frac{1}{u} d u}}} = 36 \ln{\left(\left|{x - 3}\right| \right)} - 60 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

次のことを思い出してください $$$u=x - 5$$$:

$$36 \ln{\left(\left|{x - 3}\right| \right)} - 60 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = 36 \ln{\left(\left|{x - 3}\right| \right)} - 60 \ln{\left(\left|{{\color{red}{\left(x - 5\right)}}}\right| \right)}$$

したがって、

$$\int{\left(- \frac{24 x}{\left(x - 5\right) \left(x - 3\right)}\right)d x} = - 60 \ln{\left(\left|{x - 5}\right| \right)} + 36 \ln{\left(\left|{x - 3}\right| \right)}$$

積分定数を加える:

$$\int{\left(- \frac{24 x}{\left(x - 5\right) \left(x - 3\right)}\right)d x} = - 60 \ln{\left(\left|{x - 5}\right| \right)} + 36 \ln{\left(\left|{x - 3}\right| \right)}+C$$

解答

$$$\int \left(- \frac{24 x}{\left(x - 5\right) \left(x - 3\right)}\right)\, dx = \left(- 60 \ln\left(\left|{x - 5}\right|\right) + 36 \ln\left(\left|{x - 3}\right|\right)\right) + C$$$A


Please try a new game Rotatly