$$$- \frac{24 x}{\left(x - 5\right) \left(x - 3\right)}$$$ 的積分

此計算器將求出 $$$- \frac{24 x}{\left(x - 5\right) \left(x - 3\right)}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \left(- \frac{24 x}{\left(x - 5\right) \left(x - 3\right)}\right)\, dx$$$

解答

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=-24$$$$$$f{\left(x \right)} = \frac{x}{\left(x - 5\right) \left(x - 3\right)}$$$

$${\color{red}{\int{\left(- \frac{24 x}{\left(x - 5\right) \left(x - 3\right)}\right)d x}}} = {\color{red}{\left(- 24 \int{\frac{x}{\left(x - 5\right) \left(x - 3\right)} d x}\right)}}$$

進行部分分式分解(步驟可見 »):

$$- 24 {\color{red}{\int{\frac{x}{\left(x - 5\right) \left(x - 3\right)} d x}}} = - 24 {\color{red}{\int{\left(- \frac{3}{2 \left(x - 3\right)} + \frac{5}{2 \left(x - 5\right)}\right)d x}}}$$

逐項積分:

$$- 24 {\color{red}{\int{\left(- \frac{3}{2 \left(x - 3\right)} + \frac{5}{2 \left(x - 5\right)}\right)d x}}} = - 24 {\color{red}{\left(\int{\frac{5}{2 \left(x - 5\right)} d x} - \int{\frac{3}{2 \left(x - 3\right)} d x}\right)}}$$

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\frac{3}{2}$$$$$$f{\left(x \right)} = \frac{1}{x - 3}$$$

$$- 24 \int{\frac{5}{2 \left(x - 5\right)} d x} + 24 {\color{red}{\int{\frac{3}{2 \left(x - 3\right)} d x}}} = - 24 \int{\frac{5}{2 \left(x - 5\right)} d x} + 24 {\color{red}{\left(\frac{3 \int{\frac{1}{x - 3} d x}}{2}\right)}}$$

$$$u=x - 3$$$

$$$du=\left(x - 3\right)^{\prime }dx = 1 dx$$$ (步驟見»),並可得 $$$dx = du$$$

因此,

$$- 24 \int{\frac{5}{2 \left(x - 5\right)} d x} + 36 {\color{red}{\int{\frac{1}{x - 3} d x}}} = - 24 \int{\frac{5}{2 \left(x - 5\right)} d x} + 36 {\color{red}{\int{\frac{1}{u} d u}}}$$

$$$\frac{1}{u}$$$ 的積分是 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$

$$- 24 \int{\frac{5}{2 \left(x - 5\right)} d x} + 36 {\color{red}{\int{\frac{1}{u} d u}}} = - 24 \int{\frac{5}{2 \left(x - 5\right)} d x} + 36 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

回顧一下 $$$u=x - 3$$$

$$36 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} - 24 \int{\frac{5}{2 \left(x - 5\right)} d x} = 36 \ln{\left(\left|{{\color{red}{\left(x - 3\right)}}}\right| \right)} - 24 \int{\frac{5}{2 \left(x - 5\right)} d x}$$

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\frac{5}{2}$$$$$$f{\left(x \right)} = \frac{1}{x - 5}$$$

$$36 \ln{\left(\left|{x - 3}\right| \right)} - 24 {\color{red}{\int{\frac{5}{2 \left(x - 5\right)} d x}}} = 36 \ln{\left(\left|{x - 3}\right| \right)} - 24 {\color{red}{\left(\frac{5 \int{\frac{1}{x - 5} d x}}{2}\right)}}$$

$$$u=x - 5$$$

$$$du=\left(x - 5\right)^{\prime }dx = 1 dx$$$ (步驟見»),並可得 $$$dx = du$$$

該積分可改寫為

$$36 \ln{\left(\left|{x - 3}\right| \right)} - 60 {\color{red}{\int{\frac{1}{x - 5} d x}}} = 36 \ln{\left(\left|{x - 3}\right| \right)} - 60 {\color{red}{\int{\frac{1}{u} d u}}}$$

$$$\frac{1}{u}$$$ 的積分是 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$

$$36 \ln{\left(\left|{x - 3}\right| \right)} - 60 {\color{red}{\int{\frac{1}{u} d u}}} = 36 \ln{\left(\left|{x - 3}\right| \right)} - 60 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

回顧一下 $$$u=x - 5$$$

$$36 \ln{\left(\left|{x - 3}\right| \right)} - 60 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = 36 \ln{\left(\left|{x - 3}\right| \right)} - 60 \ln{\left(\left|{{\color{red}{\left(x - 5\right)}}}\right| \right)}$$

因此,

$$\int{\left(- \frac{24 x}{\left(x - 5\right) \left(x - 3\right)}\right)d x} = - 60 \ln{\left(\left|{x - 5}\right| \right)} + 36 \ln{\left(\left|{x - 3}\right| \right)}$$

加上積分常數:

$$\int{\left(- \frac{24 x}{\left(x - 5\right) \left(x - 3\right)}\right)d x} = - 60 \ln{\left(\left|{x - 5}\right| \right)} + 36 \ln{\left(\left|{x - 3}\right| \right)}+C$$

答案

$$$\int \left(- \frac{24 x}{\left(x - 5\right) \left(x - 3\right)}\right)\, dx = \left(- 60 \ln\left(\left|{x - 5}\right|\right) + 36 \ln\left(\left|{x - 3}\right|\right)\right) + C$$$A


Please try a new game Rotatly