Ολοκλήρωμα του $$$- \frac{24 x}{\left(x - 5\right) \left(x - 3\right)}$$$

Ο υπολογιστής θα υπολογίσει το ολοκλήρωμα/την αντιπαράγωγο της $$$- \frac{24 x}{\left(x - 5\right) \left(x - 3\right)}$$$, με εμφάνιση των βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int \left(- \frac{24 x}{\left(x - 5\right) \left(x - 3\right)}\right)\, dx$$$.

Λύση

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=-24$$$ και $$$f{\left(x \right)} = \frac{x}{\left(x - 5\right) \left(x - 3\right)}$$$:

$${\color{red}{\int{\left(- \frac{24 x}{\left(x - 5\right) \left(x - 3\right)}\right)d x}}} = {\color{red}{\left(- 24 \int{\frac{x}{\left(x - 5\right) \left(x - 3\right)} d x}\right)}}$$

Εκτελέστε αποσύνθεση σε μερικά κλάσματα (τα βήματα μπορούν να προβληθούν »):

$$- 24 {\color{red}{\int{\frac{x}{\left(x - 5\right) \left(x - 3\right)} d x}}} = - 24 {\color{red}{\int{\left(- \frac{3}{2 \left(x - 3\right)} + \frac{5}{2 \left(x - 5\right)}\right)d x}}}$$

Ολοκληρώστε όρο προς όρο:

$$- 24 {\color{red}{\int{\left(- \frac{3}{2 \left(x - 3\right)} + \frac{5}{2 \left(x - 5\right)}\right)d x}}} = - 24 {\color{red}{\left(\int{\frac{5}{2 \left(x - 5\right)} d x} - \int{\frac{3}{2 \left(x - 3\right)} d x}\right)}}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=\frac{3}{2}$$$ και $$$f{\left(x \right)} = \frac{1}{x - 3}$$$:

$$- 24 \int{\frac{5}{2 \left(x - 5\right)} d x} + 24 {\color{red}{\int{\frac{3}{2 \left(x - 3\right)} d x}}} = - 24 \int{\frac{5}{2 \left(x - 5\right)} d x} + 24 {\color{red}{\left(\frac{3 \int{\frac{1}{x - 3} d x}}{2}\right)}}$$

Έστω $$$u=x - 3$$$.

Τότε $$$du=\left(x - 3\right)^{\prime }dx = 1 dx$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$dx = du$$$.

Επομένως,

$$- 24 \int{\frac{5}{2 \left(x - 5\right)} d x} + 36 {\color{red}{\int{\frac{1}{x - 3} d x}}} = - 24 \int{\frac{5}{2 \left(x - 5\right)} d x} + 36 {\color{red}{\int{\frac{1}{u} d u}}}$$

Το ολοκλήρωμα του $$$\frac{1}{u}$$$ είναι $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$- 24 \int{\frac{5}{2 \left(x - 5\right)} d x} + 36 {\color{red}{\int{\frac{1}{u} d u}}} = - 24 \int{\frac{5}{2 \left(x - 5\right)} d x} + 36 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

Θυμηθείτε ότι $$$u=x - 3$$$:

$$36 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} - 24 \int{\frac{5}{2 \left(x - 5\right)} d x} = 36 \ln{\left(\left|{{\color{red}{\left(x - 3\right)}}}\right| \right)} - 24 \int{\frac{5}{2 \left(x - 5\right)} d x}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=\frac{5}{2}$$$ και $$$f{\left(x \right)} = \frac{1}{x - 5}$$$:

$$36 \ln{\left(\left|{x - 3}\right| \right)} - 24 {\color{red}{\int{\frac{5}{2 \left(x - 5\right)} d x}}} = 36 \ln{\left(\left|{x - 3}\right| \right)} - 24 {\color{red}{\left(\frac{5 \int{\frac{1}{x - 5} d x}}{2}\right)}}$$

Έστω $$$u=x - 5$$$.

Τότε $$$du=\left(x - 5\right)^{\prime }dx = 1 dx$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$dx = du$$$.

Επομένως,

$$36 \ln{\left(\left|{x - 3}\right| \right)} - 60 {\color{red}{\int{\frac{1}{x - 5} d x}}} = 36 \ln{\left(\left|{x - 3}\right| \right)} - 60 {\color{red}{\int{\frac{1}{u} d u}}}$$

Το ολοκλήρωμα του $$$\frac{1}{u}$$$ είναι $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$36 \ln{\left(\left|{x - 3}\right| \right)} - 60 {\color{red}{\int{\frac{1}{u} d u}}} = 36 \ln{\left(\left|{x - 3}\right| \right)} - 60 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

Θυμηθείτε ότι $$$u=x - 5$$$:

$$36 \ln{\left(\left|{x - 3}\right| \right)} - 60 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = 36 \ln{\left(\left|{x - 3}\right| \right)} - 60 \ln{\left(\left|{{\color{red}{\left(x - 5\right)}}}\right| \right)}$$

Επομένως,

$$\int{\left(- \frac{24 x}{\left(x - 5\right) \left(x - 3\right)}\right)d x} = - 60 \ln{\left(\left|{x - 5}\right| \right)} + 36 \ln{\left(\left|{x - 3}\right| \right)}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{\left(- \frac{24 x}{\left(x - 5\right) \left(x - 3\right)}\right)d x} = - 60 \ln{\left(\left|{x - 5}\right| \right)} + 36 \ln{\left(\left|{x - 3}\right| \right)}+C$$

Απάντηση

$$$\int \left(- \frac{24 x}{\left(x - 5\right) \left(x - 3\right)}\right)\, dx = \left(- 60 \ln\left(\left|{x - 5}\right|\right) + 36 \ln\left(\left|{x - 3}\right|\right)\right) + C$$$A


Please try a new game Rotatly