$$$\sin{\left(x^{2} \right)}$$$의 이차 도함수

계산기는 단계별로 $$$\sin{\left(x^{2} \right)}$$$의 이계도함수를 구합니다.

관련 계산기: 미분 계산기, 로그 미분 계산기

자동 감지를 위해 비워 두세요.
특정 점에서의 도함수가 필요하지 않다면 비워 두세요.

계산기가 무언가를 계산하지 못했거나 오류를 발견하셨거나, 제안이나 피드백이 있으시다면 문의해 주세요.

사용자 입력

$$$\frac{d^{2}}{dx^{2}} \left(\sin{\left(x^{2} \right)}\right)$$$을(를) 구하시오.

풀이

제1도함수 $$$\frac{d}{dx} \left(\sin{\left(x^{2} \right)}\right)$$$를 구하세요

함수 $$$\sin{\left(x^{2} \right)}$$$는 두 함수 $$$f{\left(u \right)} = \sin{\left(u \right)}$$$$$$g{\left(x \right)} = x^{2}$$$의 합성함수 $$$f{\left(g{\left(x \right)} \right)}$$$이다.

연쇄법칙 $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$을(를) 적용하십시오:

$${\color{red}\left(\frac{d}{dx} \left(\sin{\left(x^{2} \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right) \frac{d}{dx} \left(x^{2}\right)\right)}$$

사인 함수의 도함수는 $$$\frac{d}{du} \left(\sin{\left(u \right)}\right) = \cos{\left(u \right)}$$$:

$${\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right)\right)} \frac{d}{dx} \left(x^{2}\right) = {\color{red}\left(\cos{\left(u \right)}\right)} \frac{d}{dx} \left(x^{2}\right)$$

역치환:

$$\cos{\left({\color{red}\left(u\right)} \right)} \frac{d}{dx} \left(x^{2}\right) = \cos{\left({\color{red}\left(x^{2}\right)} \right)} \frac{d}{dx} \left(x^{2}\right)$$

거듭제곱법칙 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$$$$n = 2$$$에 적용합니다:

$$\cos{\left(x^{2} \right)} {\color{red}\left(\frac{d}{dx} \left(x^{2}\right)\right)} = \cos{\left(x^{2} \right)} {\color{red}\left(2 x\right)}$$

따라서, $$$\frac{d}{dx} \left(\sin{\left(x^{2} \right)}\right) = 2 x \cos{\left(x^{2} \right)}$$$.

다음으로, $$$\frac{d^{2}}{dx^{2}} \left(\sin{\left(x^{2} \right)}\right) = \frac{d}{dx} \left(2 x \cos{\left(x^{2} \right)}\right)$$$

상수배 법칙 $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$$$$c = 2$$$$$$f{\left(x \right)} = x \cos{\left(x^{2} \right)}$$$에 적용합니다:

$${\color{red}\left(\frac{d}{dx} \left(2 x \cos{\left(x^{2} \right)}\right)\right)} = {\color{red}\left(2 \frac{d}{dx} \left(x \cos{\left(x^{2} \right)}\right)\right)}$$

$$$f{\left(x \right)} = x$$$$$$g{\left(x \right)} = \cos{\left(x^{2} \right)}$$$에 대해 곱의 미분법칙 $$$\frac{d}{dx} \left(f{\left(x \right)} g{\left(x \right)}\right) = \frac{d}{dx} \left(f{\left(x \right)}\right) g{\left(x \right)} + f{\left(x \right)} \frac{d}{dx} \left(g{\left(x \right)}\right)$$$을 적용하십시오:

$$2 {\color{red}\left(\frac{d}{dx} \left(x \cos{\left(x^{2} \right)}\right)\right)} = 2 {\color{red}\left(\frac{d}{dx} \left(x\right) \cos{\left(x^{2} \right)} + x \frac{d}{dx} \left(\cos{\left(x^{2} \right)}\right)\right)}$$

함수 $$$\cos{\left(x^{2} \right)}$$$는 두 함수 $$$f{\left(u \right)} = \cos{\left(u \right)}$$$$$$g{\left(x \right)} = x^{2}$$$의 합성함수 $$$f{\left(g{\left(x \right)} \right)}$$$이다.

연쇄법칙 $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$을(를) 적용하십시오:

$$2 x {\color{red}\left(\frac{d}{dx} \left(\cos{\left(x^{2} \right)}\right)\right)} + 2 \cos{\left(x^{2} \right)} \frac{d}{dx} \left(x\right) = 2 x {\color{red}\left(\frac{d}{du} \left(\cos{\left(u \right)}\right) \frac{d}{dx} \left(x^{2}\right)\right)} + 2 \cos{\left(x^{2} \right)} \frac{d}{dx} \left(x\right)$$

코사인의 도함수는 $$$\frac{d}{du} \left(\cos{\left(u \right)}\right) = - \sin{\left(u \right)}$$$입니다:

$$2 x {\color{red}\left(\frac{d}{du} \left(\cos{\left(u \right)}\right)\right)} \frac{d}{dx} \left(x^{2}\right) + 2 \cos{\left(x^{2} \right)} \frac{d}{dx} \left(x\right) = 2 x {\color{red}\left(- \sin{\left(u \right)}\right)} \frac{d}{dx} \left(x^{2}\right) + 2 \cos{\left(x^{2} \right)} \frac{d}{dx} \left(x\right)$$

역치환:

$$- 2 x \sin{\left({\color{red}\left(u\right)} \right)} \frac{d}{dx} \left(x^{2}\right) + 2 \cos{\left(x^{2} \right)} \frac{d}{dx} \left(x\right) = - 2 x \sin{\left({\color{red}\left(x^{2}\right)} \right)} \frac{d}{dx} \left(x^{2}\right) + 2 \cos{\left(x^{2} \right)} \frac{d}{dx} \left(x\right)$$

거듭제곱법칙 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$$$$n = 2$$$에 적용합니다:

$$- 2 x \sin{\left(x^{2} \right)} {\color{red}\left(\frac{d}{dx} \left(x^{2}\right)\right)} + 2 \cos{\left(x^{2} \right)} \frac{d}{dx} \left(x\right) = - 2 x \sin{\left(x^{2} \right)} {\color{red}\left(2 x\right)} + 2 \cos{\left(x^{2} \right)} \frac{d}{dx} \left(x\right)$$

멱법칙 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$$$$n = 1$$$에 대해 적용하면, 즉 $$$\frac{d}{dx} \left(x\right) = 1$$$:

$$- 4 x^{2} \sin{\left(x^{2} \right)} + 2 \cos{\left(x^{2} \right)} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = - 4 x^{2} \sin{\left(x^{2} \right)} + 2 \cos{\left(x^{2} \right)} {\color{red}\left(1\right)}$$

따라서, $$$\frac{d}{dx} \left(2 x \cos{\left(x^{2} \right)}\right) = - 4 x^{2} \sin{\left(x^{2} \right)} + 2 \cos{\left(x^{2} \right)}$$$.

따라서 $$$\frac{d^{2}}{dx^{2}} \left(\sin{\left(x^{2} \right)}\right) = - 4 x^{2} \sin{\left(x^{2} \right)} + 2 \cos{\left(x^{2} \right)}$$$.

정답

$$$\frac{d^{2}}{dx^{2}} \left(\sin{\left(x^{2} \right)}\right) = - 4 x^{2} \sin{\left(x^{2} \right)} + 2 \cos{\left(x^{2} \right)}$$$A


Please try a new game Rotatly