Tweede afgeleide van $$$\sin{\left(x^{2} \right)}$$$
Gerelateerde rekenmachines: Afgeleide rekenmachine, Rekenmachine voor logaritmisch differentiëren
Uw invoer
Bepaal $$$\frac{d^{2}}{dx^{2}} \left(\sin{\left(x^{2} \right)}\right)$$$.
Oplossing
Bepaal de eerste afgeleide $$$\frac{d}{dx} \left(\sin{\left(x^{2} \right)}\right)$$$
De functie $$$\sin{\left(x^{2} \right)}$$$ is de samenstelling $$$f{\left(g{\left(x \right)} \right)}$$$ van twee functies $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ en $$$g{\left(x \right)} = x^{2}$$$.
Pas de kettingregel $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ toe:
$${\color{red}\left(\frac{d}{dx} \left(\sin{\left(x^{2} \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right) \frac{d}{dx} \left(x^{2}\right)\right)}$$De afgeleide van de sinus is $$$\frac{d}{du} \left(\sin{\left(u \right)}\right) = \cos{\left(u \right)}$$$:
$${\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right)\right)} \frac{d}{dx} \left(x^{2}\right) = {\color{red}\left(\cos{\left(u \right)}\right)} \frac{d}{dx} \left(x^{2}\right)$$Keer terug naar de oorspronkelijke variabele:
$$\cos{\left({\color{red}\left(u\right)} \right)} \frac{d}{dx} \left(x^{2}\right) = \cos{\left({\color{red}\left(x^{2}\right)} \right)} \frac{d}{dx} \left(x^{2}\right)$$Pas de machtsregel $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ toe met $$$n = 2$$$:
$$\cos{\left(x^{2} \right)} {\color{red}\left(\frac{d}{dx} \left(x^{2}\right)\right)} = \cos{\left(x^{2} \right)} {\color{red}\left(2 x\right)}$$Dus, $$$\frac{d}{dx} \left(\sin{\left(x^{2} \right)}\right) = 2 x \cos{\left(x^{2} \right)}$$$.
Vervolgens, $$$\frac{d^{2}}{dx^{2}} \left(\sin{\left(x^{2} \right)}\right) = \frac{d}{dx} \left(2 x \cos{\left(x^{2} \right)}\right)$$$
Pas de regel van de constante factor $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ toe met $$$c = 2$$$ en $$$f{\left(x \right)} = x \cos{\left(x^{2} \right)}$$$:
$${\color{red}\left(\frac{d}{dx} \left(2 x \cos{\left(x^{2} \right)}\right)\right)} = {\color{red}\left(2 \frac{d}{dx} \left(x \cos{\left(x^{2} \right)}\right)\right)}$$Pas de productregel $$$\frac{d}{dx} \left(f{\left(x \right)} g{\left(x \right)}\right) = \frac{d}{dx} \left(f{\left(x \right)}\right) g{\left(x \right)} + f{\left(x \right)} \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ toe op $$$f{\left(x \right)} = x$$$ en $$$g{\left(x \right)} = \cos{\left(x^{2} \right)}$$$:
$$2 {\color{red}\left(\frac{d}{dx} \left(x \cos{\left(x^{2} \right)}\right)\right)} = 2 {\color{red}\left(\frac{d}{dx} \left(x\right) \cos{\left(x^{2} \right)} + x \frac{d}{dx} \left(\cos{\left(x^{2} \right)}\right)\right)}$$De functie $$$\cos{\left(x^{2} \right)}$$$ is de samenstelling $$$f{\left(g{\left(x \right)} \right)}$$$ van twee functies $$$f{\left(u \right)} = \cos{\left(u \right)}$$$ en $$$g{\left(x \right)} = x^{2}$$$.
Pas de kettingregel $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ toe:
$$2 x {\color{red}\left(\frac{d}{dx} \left(\cos{\left(x^{2} \right)}\right)\right)} + 2 \cos{\left(x^{2} \right)} \frac{d}{dx} \left(x\right) = 2 x {\color{red}\left(\frac{d}{du} \left(\cos{\left(u \right)}\right) \frac{d}{dx} \left(x^{2}\right)\right)} + 2 \cos{\left(x^{2} \right)} \frac{d}{dx} \left(x\right)$$De afgeleide van de cosinus is $$$\frac{d}{du} \left(\cos{\left(u \right)}\right) = - \sin{\left(u \right)}$$$:
$$2 x {\color{red}\left(\frac{d}{du} \left(\cos{\left(u \right)}\right)\right)} \frac{d}{dx} \left(x^{2}\right) + 2 \cos{\left(x^{2} \right)} \frac{d}{dx} \left(x\right) = 2 x {\color{red}\left(- \sin{\left(u \right)}\right)} \frac{d}{dx} \left(x^{2}\right) + 2 \cos{\left(x^{2} \right)} \frac{d}{dx} \left(x\right)$$Keer terug naar de oorspronkelijke variabele:
$$- 2 x \sin{\left({\color{red}\left(u\right)} \right)} \frac{d}{dx} \left(x^{2}\right) + 2 \cos{\left(x^{2} \right)} \frac{d}{dx} \left(x\right) = - 2 x \sin{\left({\color{red}\left(x^{2}\right)} \right)} \frac{d}{dx} \left(x^{2}\right) + 2 \cos{\left(x^{2} \right)} \frac{d}{dx} \left(x\right)$$Pas de machtsregel $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ toe met $$$n = 2$$$:
$$- 2 x \sin{\left(x^{2} \right)} {\color{red}\left(\frac{d}{dx} \left(x^{2}\right)\right)} + 2 \cos{\left(x^{2} \right)} \frac{d}{dx} \left(x\right) = - 2 x \sin{\left(x^{2} \right)} {\color{red}\left(2 x\right)} + 2 \cos{\left(x^{2} \right)} \frac{d}{dx} \left(x\right)$$Pas de machtsregel $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ toe met $$$n = 1$$$, met andere woorden, $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$- 4 x^{2} \sin{\left(x^{2} \right)} + 2 \cos{\left(x^{2} \right)} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = - 4 x^{2} \sin{\left(x^{2} \right)} + 2 \cos{\left(x^{2} \right)} {\color{red}\left(1\right)}$$Dus, $$$\frac{d}{dx} \left(2 x \cos{\left(x^{2} \right)}\right) = - 4 x^{2} \sin{\left(x^{2} \right)} + 2 \cos{\left(x^{2} \right)}$$$.
Daarom geldt $$$\frac{d^{2}}{dx^{2}} \left(\sin{\left(x^{2} \right)}\right) = - 4 x^{2} \sin{\left(x^{2} \right)} + 2 \cos{\left(x^{2} \right)}$$$.
Antwoord
$$$\frac{d^{2}}{dx^{2}} \left(\sin{\left(x^{2} \right)}\right) = - 4 x^{2} \sin{\left(x^{2} \right)} + 2 \cos{\left(x^{2} \right)}$$$A