Seconda derivata di $$$\sin{\left(x^{2} \right)}$$$
Calcolatrici correlate: Calcolatore di derivate, Calcolatrice di derivazione logaritmica
Il tuo input
Trova $$$\frac{d^{2}}{dx^{2}} \left(\sin{\left(x^{2} \right)}\right)$$$.
Soluzione
Trova la derivata prima $$$\frac{d}{dx} \left(\sin{\left(x^{2} \right)}\right)$$$
La funzione $$$\sin{\left(x^{2} \right)}$$$ è la composizione $$$f{\left(g{\left(x \right)} \right)}$$$ di due funzioni $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ e $$$g{\left(x \right)} = x^{2}$$$.
Applica la regola della catena $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dx} \left(\sin{\left(x^{2} \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right) \frac{d}{dx} \left(x^{2}\right)\right)}$$La derivata del seno è $$$\frac{d}{du} \left(\sin{\left(u \right)}\right) = \cos{\left(u \right)}$$$:
$${\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right)\right)} \frac{d}{dx} \left(x^{2}\right) = {\color{red}\left(\cos{\left(u \right)}\right)} \frac{d}{dx} \left(x^{2}\right)$$Torna alla variabile originale:
$$\cos{\left({\color{red}\left(u\right)} \right)} \frac{d}{dx} \left(x^{2}\right) = \cos{\left({\color{red}\left(x^{2}\right)} \right)} \frac{d}{dx} \left(x^{2}\right)$$Applica la regola della potenza $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ con $$$n = 2$$$:
$$\cos{\left(x^{2} \right)} {\color{red}\left(\frac{d}{dx} \left(x^{2}\right)\right)} = \cos{\left(x^{2} \right)} {\color{red}\left(2 x\right)}$$Quindi, $$$\frac{d}{dx} \left(\sin{\left(x^{2} \right)}\right) = 2 x \cos{\left(x^{2} \right)}$$$.
Successivamente, $$$\frac{d^{2}}{dx^{2}} \left(\sin{\left(x^{2} \right)}\right) = \frac{d}{dx} \left(2 x \cos{\left(x^{2} \right)}\right)$$$
Applica la regola del multiplo costante $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ con $$$c = 2$$$ e $$$f{\left(x \right)} = x \cos{\left(x^{2} \right)}$$$:
$${\color{red}\left(\frac{d}{dx} \left(2 x \cos{\left(x^{2} \right)}\right)\right)} = {\color{red}\left(2 \frac{d}{dx} \left(x \cos{\left(x^{2} \right)}\right)\right)}$$Applica la regola del prodotto $$$\frac{d}{dx} \left(f{\left(x \right)} g{\left(x \right)}\right) = \frac{d}{dx} \left(f{\left(x \right)}\right) g{\left(x \right)} + f{\left(x \right)} \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ a $$$f{\left(x \right)} = x$$$ e $$$g{\left(x \right)} = \cos{\left(x^{2} \right)}$$$:
$$2 {\color{red}\left(\frac{d}{dx} \left(x \cos{\left(x^{2} \right)}\right)\right)} = 2 {\color{red}\left(\frac{d}{dx} \left(x\right) \cos{\left(x^{2} \right)} + x \frac{d}{dx} \left(\cos{\left(x^{2} \right)}\right)\right)}$$La funzione $$$\cos{\left(x^{2} \right)}$$$ è la composizione $$$f{\left(g{\left(x \right)} \right)}$$$ di due funzioni $$$f{\left(u \right)} = \cos{\left(u \right)}$$$ e $$$g{\left(x \right)} = x^{2}$$$.
Applica la regola della catena $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$$2 x {\color{red}\left(\frac{d}{dx} \left(\cos{\left(x^{2} \right)}\right)\right)} + 2 \cos{\left(x^{2} \right)} \frac{d}{dx} \left(x\right) = 2 x {\color{red}\left(\frac{d}{du} \left(\cos{\left(u \right)}\right) \frac{d}{dx} \left(x^{2}\right)\right)} + 2 \cos{\left(x^{2} \right)} \frac{d}{dx} \left(x\right)$$La derivata del coseno è $$$\frac{d}{du} \left(\cos{\left(u \right)}\right) = - \sin{\left(u \right)}$$$:
$$2 x {\color{red}\left(\frac{d}{du} \left(\cos{\left(u \right)}\right)\right)} \frac{d}{dx} \left(x^{2}\right) + 2 \cos{\left(x^{2} \right)} \frac{d}{dx} \left(x\right) = 2 x {\color{red}\left(- \sin{\left(u \right)}\right)} \frac{d}{dx} \left(x^{2}\right) + 2 \cos{\left(x^{2} \right)} \frac{d}{dx} \left(x\right)$$Torna alla variabile originale:
$$- 2 x \sin{\left({\color{red}\left(u\right)} \right)} \frac{d}{dx} \left(x^{2}\right) + 2 \cos{\left(x^{2} \right)} \frac{d}{dx} \left(x\right) = - 2 x \sin{\left({\color{red}\left(x^{2}\right)} \right)} \frac{d}{dx} \left(x^{2}\right) + 2 \cos{\left(x^{2} \right)} \frac{d}{dx} \left(x\right)$$Applica la regola della potenza $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ con $$$n = 2$$$:
$$- 2 x \sin{\left(x^{2} \right)} {\color{red}\left(\frac{d}{dx} \left(x^{2}\right)\right)} + 2 \cos{\left(x^{2} \right)} \frac{d}{dx} \left(x\right) = - 2 x \sin{\left(x^{2} \right)} {\color{red}\left(2 x\right)} + 2 \cos{\left(x^{2} \right)} \frac{d}{dx} \left(x\right)$$Applica la regola della potenza $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ con $$$n = 1$$$, in altre parole, $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$- 4 x^{2} \sin{\left(x^{2} \right)} + 2 \cos{\left(x^{2} \right)} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = - 4 x^{2} \sin{\left(x^{2} \right)} + 2 \cos{\left(x^{2} \right)} {\color{red}\left(1\right)}$$Quindi, $$$\frac{d}{dx} \left(2 x \cos{\left(x^{2} \right)}\right) = - 4 x^{2} \sin{\left(x^{2} \right)} + 2 \cos{\left(x^{2} \right)}$$$.
Pertanto, $$$\frac{d^{2}}{dx^{2}} \left(\sin{\left(x^{2} \right)}\right) = - 4 x^{2} \sin{\left(x^{2} \right)} + 2 \cos{\left(x^{2} \right)}$$$.
Risposta
$$$\frac{d^{2}}{dx^{2}} \left(\sin{\left(x^{2} \right)}\right) = - 4 x^{2} \sin{\left(x^{2} \right)} + 2 \cos{\left(x^{2} \right)}$$$A