Andra derivatan av $$$\sin{\left(x^{2} \right)}$$$

Kalkylatorn kommer att beräkna den andra derivatan av $$$\sin{\left(x^{2} \right)}$$$, med steg som visas.

Relaterade kalkylatorer: Derivata-beräknare, Kalkylator för logaritmisk derivering

Lämna tomt för automatisk identifiering.
Lämna tomt om du inte behöver derivatan i en specifik punkt.

Om räknaren inte beräknade något, om du har identifierat ett fel eller om du har ett förslag/feedback, vänligen kontakta oss.

Din inmatning

Bestäm $$$\frac{d^{2}}{dx^{2}} \left(\sin{\left(x^{2} \right)}\right)$$$.

Lösning

Bestäm den första derivatan $$$\frac{d}{dx} \left(\sin{\left(x^{2} \right)}\right)$$$

Funktionen $$$\sin{\left(x^{2} \right)}$$$ är sammansättningen $$$f{\left(g{\left(x \right)} \right)}$$$ av två funktioner $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ och $$$g{\left(x \right)} = x^{2}$$$.

Tillämpa kedjeregeln $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:

$${\color{red}\left(\frac{d}{dx} \left(\sin{\left(x^{2} \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right) \frac{d}{dx} \left(x^{2}\right)\right)}$$

Derivatan av sinus är $$$\frac{d}{du} \left(\sin{\left(u \right)}\right) = \cos{\left(u \right)}$$$:

$${\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right)\right)} \frac{d}{dx} \left(x^{2}\right) = {\color{red}\left(\cos{\left(u \right)}\right)} \frac{d}{dx} \left(x^{2}\right)$$

Återgå till den ursprungliga variabeln:

$$\cos{\left({\color{red}\left(u\right)} \right)} \frac{d}{dx} \left(x^{2}\right) = \cos{\left({\color{red}\left(x^{2}\right)} \right)} \frac{d}{dx} \left(x^{2}\right)$$

Tillämpa potensregeln $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ med $$$n = 2$$$:

$$\cos{\left(x^{2} \right)} {\color{red}\left(\frac{d}{dx} \left(x^{2}\right)\right)} = \cos{\left(x^{2} \right)} {\color{red}\left(2 x\right)}$$

Alltså, $$$\frac{d}{dx} \left(\sin{\left(x^{2} \right)}\right) = 2 x \cos{\left(x^{2} \right)}$$$.

Därefter, $$$\frac{d^{2}}{dx^{2}} \left(\sin{\left(x^{2} \right)}\right) = \frac{d}{dx} \left(2 x \cos{\left(x^{2} \right)}\right)$$$

Tillämpa konstantfaktorregeln $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ med $$$c = 2$$$ och $$$f{\left(x \right)} = x \cos{\left(x^{2} \right)}$$$:

$${\color{red}\left(\frac{d}{dx} \left(2 x \cos{\left(x^{2} \right)}\right)\right)} = {\color{red}\left(2 \frac{d}{dx} \left(x \cos{\left(x^{2} \right)}\right)\right)}$$

Tillämpa produktregeln $$$\frac{d}{dx} \left(f{\left(x \right)} g{\left(x \right)}\right) = \frac{d}{dx} \left(f{\left(x \right)}\right) g{\left(x \right)} + f{\left(x \right)} \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ med $$$f{\left(x \right)} = x$$$ och $$$g{\left(x \right)} = \cos{\left(x^{2} \right)}$$$:

$$2 {\color{red}\left(\frac{d}{dx} \left(x \cos{\left(x^{2} \right)}\right)\right)} = 2 {\color{red}\left(\frac{d}{dx} \left(x\right) \cos{\left(x^{2} \right)} + x \frac{d}{dx} \left(\cos{\left(x^{2} \right)}\right)\right)}$$

Funktionen $$$\cos{\left(x^{2} \right)}$$$ är sammansättningen $$$f{\left(g{\left(x \right)} \right)}$$$ av två funktioner $$$f{\left(u \right)} = \cos{\left(u \right)}$$$ och $$$g{\left(x \right)} = x^{2}$$$.

Tillämpa kedjeregeln $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:

$$2 x {\color{red}\left(\frac{d}{dx} \left(\cos{\left(x^{2} \right)}\right)\right)} + 2 \cos{\left(x^{2} \right)} \frac{d}{dx} \left(x\right) = 2 x {\color{red}\left(\frac{d}{du} \left(\cos{\left(u \right)}\right) \frac{d}{dx} \left(x^{2}\right)\right)} + 2 \cos{\left(x^{2} \right)} \frac{d}{dx} \left(x\right)$$

Derivatan av cosinus är $$$\frac{d}{du} \left(\cos{\left(u \right)}\right) = - \sin{\left(u \right)}$$$:

$$2 x {\color{red}\left(\frac{d}{du} \left(\cos{\left(u \right)}\right)\right)} \frac{d}{dx} \left(x^{2}\right) + 2 \cos{\left(x^{2} \right)} \frac{d}{dx} \left(x\right) = 2 x {\color{red}\left(- \sin{\left(u \right)}\right)} \frac{d}{dx} \left(x^{2}\right) + 2 \cos{\left(x^{2} \right)} \frac{d}{dx} \left(x\right)$$

Återgå till den ursprungliga variabeln:

$$- 2 x \sin{\left({\color{red}\left(u\right)} \right)} \frac{d}{dx} \left(x^{2}\right) + 2 \cos{\left(x^{2} \right)} \frac{d}{dx} \left(x\right) = - 2 x \sin{\left({\color{red}\left(x^{2}\right)} \right)} \frac{d}{dx} \left(x^{2}\right) + 2 \cos{\left(x^{2} \right)} \frac{d}{dx} \left(x\right)$$

Tillämpa potensregeln $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ med $$$n = 2$$$:

$$- 2 x \sin{\left(x^{2} \right)} {\color{red}\left(\frac{d}{dx} \left(x^{2}\right)\right)} + 2 \cos{\left(x^{2} \right)} \frac{d}{dx} \left(x\right) = - 2 x \sin{\left(x^{2} \right)} {\color{red}\left(2 x\right)} + 2 \cos{\left(x^{2} \right)} \frac{d}{dx} \left(x\right)$$

Tillämpa potensregeln $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ med $$$n = 1$$$, det vill säga $$$\frac{d}{dx} \left(x\right) = 1$$$:

$$- 4 x^{2} \sin{\left(x^{2} \right)} + 2 \cos{\left(x^{2} \right)} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = - 4 x^{2} \sin{\left(x^{2} \right)} + 2 \cos{\left(x^{2} \right)} {\color{red}\left(1\right)}$$

Alltså, $$$\frac{d}{dx} \left(2 x \cos{\left(x^{2} \right)}\right) = - 4 x^{2} \sin{\left(x^{2} \right)} + 2 \cos{\left(x^{2} \right)}$$$.

Således, $$$\frac{d^{2}}{dx^{2}} \left(\sin{\left(x^{2} \right)}\right) = - 4 x^{2} \sin{\left(x^{2} \right)} + 2 \cos{\left(x^{2} \right)}$$$.

Svar

$$$\frac{d^{2}}{dx^{2}} \left(\sin{\left(x^{2} \right)}\right) = - 4 x^{2} \sin{\left(x^{2} \right)} + 2 \cos{\left(x^{2} \right)}$$$A


Please try a new game Rotatly