$$$t^{3} e^{- t^{2}}$$$の積分

この計算機は、手順を示しながら$$$t^{3} e^{- t^{2}}$$$の不定積分(原始関数)を求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int t^{3} e^{- t^{2}}\, dt$$$ を求めよ。

解答

$$$u=- t^{2}$$$ とする。

すると $$$du=\left(- t^{2}\right)^{\prime }dt = - 2 t dt$$$(手順は»で確認できます)、$$$t dt = - \frac{du}{2}$$$ となります。

この積分は次のように書き換えられる

$${\color{red}{\int{t^{3} e^{- t^{2}} d t}}} = {\color{red}{\int{\frac{u e^{u}}{2} d u}}}$$

定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=\frac{1}{2}$$$$$$f{\left(u \right)} = u e^{u}$$$ に対して適用する:

$${\color{red}{\int{\frac{u e^{u}}{2} d u}}} = {\color{red}{\left(\frac{\int{u e^{u} d u}}{2}\right)}}$$

積分 $$$\int{u e^{u} d u}$$$ には、部分積分法$$$\int \operatorname{c} \operatorname{dv} = \operatorname{c}\operatorname{v} - \int \operatorname{v} \operatorname{dc}$$$を用いてください。

$$$\operatorname{c}=u$$$$$$\operatorname{dv}=e^{u} du$$$ とする。

したがって、$$$\operatorname{dc}=\left(u\right)^{\prime }du=1 du$$$(手順は»を参照)および$$$\operatorname{v}=\int{e^{u} d u}=e^{u}$$$(手順は»を参照)。

したがって、

$$\frac{{\color{red}{\int{u e^{u} d u}}}}{2}=\frac{{\color{red}{\left(u \cdot e^{u}-\int{e^{u} \cdot 1 d u}\right)}}}{2}=\frac{{\color{red}{\left(u e^{u} - \int{e^{u} d u}\right)}}}{2}$$

指数関数の積分は $$$\int{e^{u} d u} = e^{u}$$$です:

$$\frac{u e^{u}}{2} - \frac{{\color{red}{\int{e^{u} d u}}}}{2} = \frac{u e^{u}}{2} - \frac{{\color{red}{e^{u}}}}{2}$$

次のことを思い出してください $$$u=- t^{2}$$$:

$$- \frac{e^{{\color{red}{u}}}}{2} + \frac{{\color{red}{u}} e^{{\color{red}{u}}}}{2} = - \frac{e^{{\color{red}{\left(- t^{2}\right)}}}}{2} + \frac{{\color{red}{\left(- t^{2}\right)}} e^{{\color{red}{\left(- t^{2}\right)}}}}{2}$$

したがって、

$$\int{t^{3} e^{- t^{2}} d t} = - \frac{t^{2} e^{- t^{2}}}{2} - \frac{e^{- t^{2}}}{2}$$

簡単化せよ:

$$\int{t^{3} e^{- t^{2}} d t} = \frac{\left(- t^{2} - 1\right) e^{- t^{2}}}{2}$$

積分定数を加える:

$$\int{t^{3} e^{- t^{2}} d t} = \frac{\left(- t^{2} - 1\right) e^{- t^{2}}}{2}+C$$

解答

$$$\int t^{3} e^{- t^{2}}\, dt = \frac{\left(- t^{2} - 1\right) e^{- t^{2}}}{2} + C$$$A


Please try a new game Rotatly