Integrale di $$$t^{3} e^{- t^{2}}$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int t^{3} e^{- t^{2}}\, dt$$$.
Soluzione
Sia $$$u=- t^{2}$$$.
Quindi $$$du=\left(- t^{2}\right)^{\prime }dt = - 2 t dt$$$ (i passaggi si possono vedere »), e si ha che $$$t dt = - \frac{du}{2}$$$.
Quindi,
$${\color{red}{\int{t^{3} e^{- t^{2}} d t}}} = {\color{red}{\int{\frac{u e^{u}}{2} d u}}}$$
Applica la regola del fattore costante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{2}$$$ e $$$f{\left(u \right)} = u e^{u}$$$:
$${\color{red}{\int{\frac{u e^{u}}{2} d u}}} = {\color{red}{\left(\frac{\int{u e^{u} d u}}{2}\right)}}$$
Per l'integrale $$$\int{u e^{u} d u}$$$, usa l'integrazione per parti $$$\int \operatorname{c} \operatorname{dv} = \operatorname{c}\operatorname{v} - \int \operatorname{v} \operatorname{dc}$$$.
Siano $$$\operatorname{c}=u$$$ e $$$\operatorname{dv}=e^{u} du$$$.
Quindi $$$\operatorname{dc}=\left(u\right)^{\prime }du=1 du$$$ (i passaggi si possono vedere ») e $$$\operatorname{v}=\int{e^{u} d u}=e^{u}$$$ (i passaggi si possono vedere »).
Quindi,
$$\frac{{\color{red}{\int{u e^{u} d u}}}}{2}=\frac{{\color{red}{\left(u \cdot e^{u}-\int{e^{u} \cdot 1 d u}\right)}}}{2}=\frac{{\color{red}{\left(u e^{u} - \int{e^{u} d u}\right)}}}{2}$$
L'integrale della funzione esponenziale è $$$\int{e^{u} d u} = e^{u}$$$:
$$\frac{u e^{u}}{2} - \frac{{\color{red}{\int{e^{u} d u}}}}{2} = \frac{u e^{u}}{2} - \frac{{\color{red}{e^{u}}}}{2}$$
Ricordiamo che $$$u=- t^{2}$$$:
$$- \frac{e^{{\color{red}{u}}}}{2} + \frac{{\color{red}{u}} e^{{\color{red}{u}}}}{2} = - \frac{e^{{\color{red}{\left(- t^{2}\right)}}}}{2} + \frac{{\color{red}{\left(- t^{2}\right)}} e^{{\color{red}{\left(- t^{2}\right)}}}}{2}$$
Pertanto,
$$\int{t^{3} e^{- t^{2}} d t} = - \frac{t^{2} e^{- t^{2}}}{2} - \frac{e^{- t^{2}}}{2}$$
Semplifica:
$$\int{t^{3} e^{- t^{2}} d t} = \frac{\left(- t^{2} - 1\right) e^{- t^{2}}}{2}$$
Aggiungi la costante di integrazione:
$$\int{t^{3} e^{- t^{2}} d t} = \frac{\left(- t^{2} - 1\right) e^{- t^{2}}}{2}+C$$
Risposta
$$$\int t^{3} e^{- t^{2}}\, dt = \frac{\left(- t^{2} - 1\right) e^{- t^{2}}}{2} + C$$$A