Integralen av $$$t^{3} e^{- t^{2}}$$$

Kalkylatorn beräknar integralen/stamfunktionen för $$$t^{3} e^{- t^{2}}$$$, med visade steg.

Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler

Vänligen skriv utan några differentialer såsom $$$dx$$$, $$$dy$$$ osv.
Lämna tomt för automatisk identifiering.

Om räknaren inte beräknade något, om du har identifierat ett fel eller om du har ett förslag/feedback, vänligen kontakta oss.

Din inmatning

Bestäm $$$\int t^{3} e^{- t^{2}}\, dt$$$.

Lösning

Låt $$$u=- t^{2}$$$ vara.

$$$du=\left(- t^{2}\right)^{\prime }dt = - 2 t dt$$$ (stegen kan ses »), och vi har att $$$t dt = - \frac{du}{2}$$$.

Integralen blir

$${\color{red}{\int{t^{3} e^{- t^{2}} d t}}} = {\color{red}{\int{\frac{u e^{u}}{2} d u}}}$$

Tillämpa konstantfaktorregeln $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ med $$$c=\frac{1}{2}$$$ och $$$f{\left(u \right)} = u e^{u}$$$:

$${\color{red}{\int{\frac{u e^{u}}{2} d u}}} = {\color{red}{\left(\frac{\int{u e^{u} d u}}{2}\right)}}$$

För integralen $$$\int{u e^{u} d u}$$$, använd partiell integration $$$\int \operatorname{c} \operatorname{dv} = \operatorname{c}\operatorname{v} - \int \operatorname{v} \operatorname{dc}$$$.

Låt $$$\operatorname{c}=u$$$ och $$$\operatorname{dv}=e^{u} du$$$.

Då gäller $$$\operatorname{dc}=\left(u\right)^{\prime }du=1 du$$$ (stegen kan ses ») och $$$\operatorname{v}=\int{e^{u} d u}=e^{u}$$$ (stegen kan ses »).

Alltså,

$$\frac{{\color{red}{\int{u e^{u} d u}}}}{2}=\frac{{\color{red}{\left(u \cdot e^{u}-\int{e^{u} \cdot 1 d u}\right)}}}{2}=\frac{{\color{red}{\left(u e^{u} - \int{e^{u} d u}\right)}}}{2}$$

Integralen av den exponentiella funktionen är $$$\int{e^{u} d u} = e^{u}$$$:

$$\frac{u e^{u}}{2} - \frac{{\color{red}{\int{e^{u} d u}}}}{2} = \frac{u e^{u}}{2} - \frac{{\color{red}{e^{u}}}}{2}$$

Kom ihåg att $$$u=- t^{2}$$$:

$$- \frac{e^{{\color{red}{u}}}}{2} + \frac{{\color{red}{u}} e^{{\color{red}{u}}}}{2} = - \frac{e^{{\color{red}{\left(- t^{2}\right)}}}}{2} + \frac{{\color{red}{\left(- t^{2}\right)}} e^{{\color{red}{\left(- t^{2}\right)}}}}{2}$$

Alltså,

$$\int{t^{3} e^{- t^{2}} d t} = - \frac{t^{2} e^{- t^{2}}}{2} - \frac{e^{- t^{2}}}{2}$$

Förenkla:

$$\int{t^{3} e^{- t^{2}} d t} = \frac{\left(- t^{2} - 1\right) e^{- t^{2}}}{2}$$

Lägg till integrationskonstanten:

$$\int{t^{3} e^{- t^{2}} d t} = \frac{\left(- t^{2} - 1\right) e^{- t^{2}}}{2}+C$$

Svar

$$$\int t^{3} e^{- t^{2}}\, dt = \frac{\left(- t^{2} - 1\right) e^{- t^{2}}}{2} + C$$$A


Please try a new game Rotatly