$$$e^{- x^{2} y^{2}}$$$$$$x$$$ に関する積分

この計算機は、$$$x$$$ に関して $$$e^{- x^{2} y^{2}}$$$ の積分/原始関数を、手順を示しながら求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int e^{- x^{2} y^{2}}\, dx$$$ を求めよ。

解答

$$$u=x \left|{y}\right|$$$ とする。

すると $$$du=\left(x \left|{y}\right|\right)^{\prime }dx = \left|{y}\right| dx$$$(手順は»で確認できます)、$$$dx = \frac{du}{\left|{y}\right|}$$$ となります。

したがって、

$${\color{red}{\int{e^{- x^{2} y^{2}} d x}}} = {\color{red}{\int{\frac{e^{- u^{2}}}{\left|{y}\right|} d u}}}$$

定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=\frac{1}{\left|{y}\right|}$$$$$$f{\left(u \right)} = e^{- u^{2}}$$$ に対して適用する:

$${\color{red}{\int{\frac{e^{- u^{2}}}{\left|{y}\right|} d u}}} = {\color{red}{\frac{\int{e^{- u^{2}} d u}}{\left|{y}\right|}}}$$

この積分(誤差関数)には閉形式はありません:

$$\frac{{\color{red}{\int{e^{- u^{2}} d u}}}}{\left|{y}\right|} = \frac{{\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erf}{\left(u \right)}}{2}\right)}}}{\left|{y}\right|}$$

次のことを思い出してください $$$u=x \left|{y}\right|$$$:

$$\frac{\sqrt{\pi} \operatorname{erf}{\left({\color{red}{u}} \right)}}{2 \left|{y}\right|} = \frac{\sqrt{\pi} \operatorname{erf}{\left({\color{red}{x \left|{y}\right|}} \right)}}{2 \left|{y}\right|}$$

したがって、

$$\int{e^{- x^{2} y^{2}} d x} = \frac{\sqrt{\pi} \operatorname{erf}{\left(x \left|{y}\right| \right)}}{2 \left|{y}\right|}$$

積分定数を加える:

$$\int{e^{- x^{2} y^{2}} d x} = \frac{\sqrt{\pi} \operatorname{erf}{\left(x \left|{y}\right| \right)}}{2 \left|{y}\right|}+C$$

解答

$$$\int e^{- x^{2} y^{2}}\, dx = \frac{\sqrt{\pi} \operatorname{erf}{\left(x \left|{y}\right| \right)}}{2 \left|{y}\right|} + C$$$A


Please try a new game Rotatly