Integralen av $$$e^{- x^{2} y^{2}}$$$ med avseende på $$$x$$$

Kalkylatorn beräknar integralen/primitivfunktionen av $$$e^{- x^{2} y^{2}}$$$ med avseende på $$$x$$$, med stegvis lösning.

Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler

Vänligen skriv utan några differentialer såsom $$$dx$$$, $$$dy$$$ osv.
Lämna tomt för automatisk identifiering.

Om räknaren inte beräknade något, om du har identifierat ett fel eller om du har ett förslag/feedback, vänligen kontakta oss.

Din inmatning

Bestäm $$$\int e^{- x^{2} y^{2}}\, dx$$$.

Lösning

Låt $$$u=x \left|{y}\right|$$$ vara.

$$$du=\left(x \left|{y}\right|\right)^{\prime }dx = \left|{y}\right| dx$$$ (stegen kan ses »), och vi har att $$$dx = \frac{du}{\left|{y}\right|}$$$.

Integralen blir

$${\color{red}{\int{e^{- x^{2} y^{2}} d x}}} = {\color{red}{\int{\frac{e^{- u^{2}}}{\left|{y}\right|} d u}}}$$

Tillämpa konstantfaktorregeln $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ med $$$c=\frac{1}{\left|{y}\right|}$$$ och $$$f{\left(u \right)} = e^{- u^{2}}$$$:

$${\color{red}{\int{\frac{e^{- u^{2}}}{\left|{y}\right|} d u}}} = {\color{red}{\frac{\int{e^{- u^{2}} d u}}{\left|{y}\right|}}}$$

Denna integral (Felintegral) har ingen sluten form:

$$\frac{{\color{red}{\int{e^{- u^{2}} d u}}}}{\left|{y}\right|} = \frac{{\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erf}{\left(u \right)}}{2}\right)}}}{\left|{y}\right|}$$

Kom ihåg att $$$u=x \left|{y}\right|$$$:

$$\frac{\sqrt{\pi} \operatorname{erf}{\left({\color{red}{u}} \right)}}{2 \left|{y}\right|} = \frac{\sqrt{\pi} \operatorname{erf}{\left({\color{red}{x \left|{y}\right|}} \right)}}{2 \left|{y}\right|}$$

Alltså,

$$\int{e^{- x^{2} y^{2}} d x} = \frac{\sqrt{\pi} \operatorname{erf}{\left(x \left|{y}\right| \right)}}{2 \left|{y}\right|}$$

Lägg till integrationskonstanten:

$$\int{e^{- x^{2} y^{2}} d x} = \frac{\sqrt{\pi} \operatorname{erf}{\left(x \left|{y}\right| \right)}}{2 \left|{y}\right|}+C$$

Svar

$$$\int e^{- x^{2} y^{2}}\, dx = \frac{\sqrt{\pi} \operatorname{erf}{\left(x \left|{y}\right| \right)}}{2 \left|{y}\right|} + C$$$A


Please try a new game Rotatly