Ολοκλήρωμα της $$$e^{- x^{2} y^{2}}$$$ ως προς $$$x$$$
Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Η είσοδός σας
Βρείτε $$$\int e^{- x^{2} y^{2}}\, dx$$$.
Λύση
Έστω $$$u=x \left|{y}\right|$$$.
Τότε $$$du=\left(x \left|{y}\right|\right)^{\prime }dx = \left|{y}\right| dx$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$dx = \frac{du}{\left|{y}\right|}$$$.
Το ολοκλήρωμα γίνεται
$${\color{red}{\int{e^{- x^{2} y^{2}} d x}}} = {\color{red}{\int{\frac{e^{- u^{2}}}{\left|{y}\right|} d u}}}$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=\frac{1}{\left|{y}\right|}$$$ και $$$f{\left(u \right)} = e^{- u^{2}}$$$:
$${\color{red}{\int{\frac{e^{- u^{2}}}{\left|{y}\right|} d u}}} = {\color{red}{\frac{\int{e^{- u^{2}} d u}}{\left|{y}\right|}}}$$
Αυτό το ολοκλήρωμα (Συνάρτηση σφάλματος) δεν έχει κλειστή μορφή:
$$\frac{{\color{red}{\int{e^{- u^{2}} d u}}}}{\left|{y}\right|} = \frac{{\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erf}{\left(u \right)}}{2}\right)}}}{\left|{y}\right|}$$
Θυμηθείτε ότι $$$u=x \left|{y}\right|$$$:
$$\frac{\sqrt{\pi} \operatorname{erf}{\left({\color{red}{u}} \right)}}{2 \left|{y}\right|} = \frac{\sqrt{\pi} \operatorname{erf}{\left({\color{red}{x \left|{y}\right|}} \right)}}{2 \left|{y}\right|}$$
Επομένως,
$$\int{e^{- x^{2} y^{2}} d x} = \frac{\sqrt{\pi} \operatorname{erf}{\left(x \left|{y}\right| \right)}}{2 \left|{y}\right|}$$
Προσθέστε τη σταθερά ολοκλήρωσης:
$$\int{e^{- x^{2} y^{2}} d x} = \frac{\sqrt{\pi} \operatorname{erf}{\left(x \left|{y}\right| \right)}}{2 \left|{y}\right|}+C$$
Απάντηση
$$$\int e^{- x^{2} y^{2}}\, dx = \frac{\sqrt{\pi} \operatorname{erf}{\left(x \left|{y}\right| \right)}}{2 \left|{y}\right|} + C$$$A