$$$- \sqrt[3]{3} \sqrt[3]{x} - 1$$$の積分

この計算機は、手順を示しながら$$$- \sqrt[3]{3} \sqrt[3]{x} - 1$$$の不定積分(原始関数)を求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int \left(- \sqrt[3]{3} \sqrt[3]{x} - 1\right)\, dx$$$ を求めよ。

解答

項別に積分せよ:

$${\color{red}{\int{\left(- \sqrt[3]{3} \sqrt[3]{x} - 1\right)d x}}} = {\color{red}{\left(- \int{1 d x} - \int{\sqrt[3]{3} \sqrt[3]{x} d x}\right)}}$$

$$$c=1$$$ に対して定数則 $$$\int c\, dx = c x$$$ を適用する:

$$- \int{\sqrt[3]{3} \sqrt[3]{x} d x} - {\color{red}{\int{1 d x}}} = - \int{\sqrt[3]{3} \sqrt[3]{x} d x} - {\color{red}{x}}$$

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\sqrt[3]{3}$$$$$$f{\left(x \right)} = \sqrt[3]{x}$$$ に対して適用する:

$$- x - {\color{red}{\int{\sqrt[3]{3} \sqrt[3]{x} d x}}} = - x - {\color{red}{\sqrt[3]{3} \int{\sqrt[3]{x} d x}}}$$

$$$n=\frac{1}{3}$$$ を用いて、べき乗の法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:

$$- x - \sqrt[3]{3} {\color{red}{\int{\sqrt[3]{x} d x}}}=- x - \sqrt[3]{3} {\color{red}{\int{x^{\frac{1}{3}} d x}}}=- x - \sqrt[3]{3} {\color{red}{\frac{x^{\frac{1}{3} + 1}}{\frac{1}{3} + 1}}}=- x - \sqrt[3]{3} {\color{red}{\left(\frac{3 x^{\frac{4}{3}}}{4}\right)}}$$

したがって、

$$\int{\left(- \sqrt[3]{3} \sqrt[3]{x} - 1\right)d x} = - \frac{3 \sqrt[3]{3} x^{\frac{4}{3}}}{4} - x$$

積分定数を加える:

$$\int{\left(- \sqrt[3]{3} \sqrt[3]{x} - 1\right)d x} = - \frac{3 \sqrt[3]{3} x^{\frac{4}{3}}}{4} - x+C$$

解答

$$$\int \left(- \sqrt[3]{3} \sqrt[3]{x} - 1\right)\, dx = \left(- \frac{3 \sqrt[3]{3} x^{\frac{4}{3}}}{4} - x\right) + C$$$A


Please try a new game Rotatly