Integral dari $$$- \sqrt[3]{3} \sqrt[3]{x} - 1$$$

Kalkulator akan menemukan integral/antiturunan dari $$$- \sqrt[3]{3} \sqrt[3]{x} - 1$$$, dengan menampilkan langkah-langkah.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int \left(- \sqrt[3]{3} \sqrt[3]{x} - 1\right)\, dx$$$.

Solusi

Integralkan suku demi suku:

$${\color{red}{\int{\left(- \sqrt[3]{3} \sqrt[3]{x} - 1\right)d x}}} = {\color{red}{\left(- \int{1 d x} - \int{\sqrt[3]{3} \sqrt[3]{x} d x}\right)}}$$

Terapkan aturan konstanta $$$\int c\, dx = c x$$$ dengan $$$c=1$$$:

$$- \int{\sqrt[3]{3} \sqrt[3]{x} d x} - {\color{red}{\int{1 d x}}} = - \int{\sqrt[3]{3} \sqrt[3]{x} d x} - {\color{red}{x}}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=\sqrt[3]{3}$$$ dan $$$f{\left(x \right)} = \sqrt[3]{x}$$$:

$$- x - {\color{red}{\int{\sqrt[3]{3} \sqrt[3]{x} d x}}} = - x - {\color{red}{\sqrt[3]{3} \int{\sqrt[3]{x} d x}}}$$

Terapkan aturan pangkat $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ dengan $$$n=\frac{1}{3}$$$:

$$- x - \sqrt[3]{3} {\color{red}{\int{\sqrt[3]{x} d x}}}=- x - \sqrt[3]{3} {\color{red}{\int{x^{\frac{1}{3}} d x}}}=- x - \sqrt[3]{3} {\color{red}{\frac{x^{\frac{1}{3} + 1}}{\frac{1}{3} + 1}}}=- x - \sqrt[3]{3} {\color{red}{\left(\frac{3 x^{\frac{4}{3}}}{4}\right)}}$$

Oleh karena itu,

$$\int{\left(- \sqrt[3]{3} \sqrt[3]{x} - 1\right)d x} = - \frac{3 \sqrt[3]{3} x^{\frac{4}{3}}}{4} - x$$

Tambahkan konstanta integrasi:

$$\int{\left(- \sqrt[3]{3} \sqrt[3]{x} - 1\right)d x} = - \frac{3 \sqrt[3]{3} x^{\frac{4}{3}}}{4} - x+C$$

Jawaban

$$$\int \left(- \sqrt[3]{3} \sqrt[3]{x} - 1\right)\, dx = \left(- \frac{3 \sqrt[3]{3} x^{\frac{4}{3}}}{4} - x\right) + C$$$A


Please try a new game Rotatly