Integrale di $$$e^{\frac{\pi t}{2}}$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int e^{\frac{\pi t}{2}}\, dt$$$.
Soluzione
Sia $$$u=\frac{\pi t}{2}$$$.
Quindi $$$du=\left(\frac{\pi t}{2}\right)^{\prime }dt = \frac{\pi}{2} dt$$$ (i passaggi si possono vedere »), e si ha che $$$dt = \frac{2 du}{\pi}$$$.
L'integrale diventa
$${\color{red}{\int{e^{\frac{\pi t}{2}} d t}}} = {\color{red}{\int{\frac{2 e^{u}}{\pi} d u}}}$$
Applica la regola del fattore costante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{2}{\pi}$$$ e $$$f{\left(u \right)} = e^{u}$$$:
$${\color{red}{\int{\frac{2 e^{u}}{\pi} d u}}} = {\color{red}{\left(\frac{2 \int{e^{u} d u}}{\pi}\right)}}$$
L'integrale della funzione esponenziale è $$$\int{e^{u} d u} = e^{u}$$$:
$$\frac{2 {\color{red}{\int{e^{u} d u}}}}{\pi} = \frac{2 {\color{red}{e^{u}}}}{\pi}$$
Ricordiamo che $$$u=\frac{\pi t}{2}$$$:
$$\frac{2 e^{{\color{red}{u}}}}{\pi} = \frac{2 e^{{\color{red}{\left(\frac{\pi t}{2}\right)}}}}{\pi}$$
Pertanto,
$$\int{e^{\frac{\pi t}{2}} d t} = \frac{2 e^{\frac{\pi t}{2}}}{\pi}$$
Aggiungi la costante di integrazione:
$$\int{e^{\frac{\pi t}{2}} d t} = \frac{2 e^{\frac{\pi t}{2}}}{\pi}+C$$
Risposta
$$$\int e^{\frac{\pi t}{2}}\, dt = \frac{2 e^{\frac{\pi t}{2}}}{\pi} + C$$$A