Turunan dari $$$2 \ln\left(x\right)$$$
Kalkulator terkait: Kalkulator Diferensiasi Logaritmik, Kalkulator Diferensiasi Implisit dengan Langkah-langkah
Masukan Anda
Temukan $$$\frac{d}{dx} \left(2 \ln\left(x\right)\right)$$$.
Solusi
Terapkan aturan kelipatan konstanta $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ dengan $$$c = 2$$$ dan $$$f{\left(x \right)} = \ln\left(x\right)$$$:
$${\color{red}\left(\frac{d}{dx} \left(2 \ln\left(x\right)\right)\right)} = {\color{red}\left(2 \frac{d}{dx} \left(\ln\left(x\right)\right)\right)}$$Turunan dari logaritma natural adalah $$$\frac{d}{dx} \left(\ln\left(x\right)\right) = \frac{1}{x}$$$:
$$2 {\color{red}\left(\frac{d}{dx} \left(\ln\left(x\right)\right)\right)} = 2 {\color{red}\left(\frac{1}{x}\right)}$$Dengan demikian, $$$\frac{d}{dx} \left(2 \ln\left(x\right)\right) = \frac{2}{x}$$$.
Jawaban
$$$\frac{d}{dx} \left(2 \ln\left(x\right)\right) = \frac{2}{x}$$$A