Identifiez la section conique $$$- 51 x^{2} + e^{2} = 0$$$
Calculatrices associées: Calculatrice de parabole, Calculatrice de cercle, Calculatrice d'ellipse, Calculatrice d'hyperbole
Votre saisie
Identifiez et déterminez les propriétés de la section conique $$$- 51 x^{2} + e^{2} = 0$$$.
Solution
L'équation générale d'une section conique est $$$A x^{2} + B x y + C y^{2} + D x + E y + F = 0$$$.
Dans notre cas, $$$A = 51$$$, $$$B = 0$$$, $$$C = 0$$$, $$$D = 0$$$, $$$E = 0$$$, $$$F = - e^{2}$$$.
Le discriminant de la section conique est $$$\Delta = 4 A C F - A E^{2} - B^{2} F + B D E - C D^{2} = 0$$$.
Ensuite, $$$B^{2} - 4 A C = 0$$$.
Puisque $$$\Delta = 0$$$, il s’agit d’une section conique dégénérée.
Puisque $$$B^{2} - 4 A C = 0$$$, l'équation représente deux droites parallèles.
Réponse
$$$- 51 x^{2} + e^{2} = 0$$$A représente la paire de droites $$$x = - \frac{\sqrt{51} e}{51}$$$, $$$x = \frac{\sqrt{51} e}{51}$$$A.
Forme générale : $$$51 x^{2} - e^{2} = 0$$$A.
Forme factorisée : $$$\left(51 x - \sqrt{51} e\right) \left(51 x + \sqrt{51} e\right) = 0$$$A.
Graphique : voir la calculatrice graphique.