Funktion $$$\frac{x}{x - 1}$$$ integraali
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int \frac{x}{x - 1}\, dx$$$.
Ratkaisu
Kirjoita murtolauseke uudelleen ja jaa se osamurtoihin:
$${\color{red}{\int{\frac{x}{x - 1} d x}}} = {\color{red}{\int{\left(1 + \frac{1}{x - 1}\right)d x}}}$$
Integroi termi kerrallaan:
$${\color{red}{\int{\left(1 + \frac{1}{x - 1}\right)d x}}} = {\color{red}{\left(\int{1 d x} + \int{\frac{1}{x - 1} d x}\right)}}$$
Sovella vakiosääntöä $$$\int c\, dx = c x$$$ käyttäen $$$c=1$$$:
$$\int{\frac{1}{x - 1} d x} + {\color{red}{\int{1 d x}}} = \int{\frac{1}{x - 1} d x} + {\color{red}{x}}$$
Olkoon $$$u=x - 1$$$.
Tällöin $$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$dx = du$$$.
Siis,
$$x + {\color{red}{\int{\frac{1}{x - 1} d x}}} = x + {\color{red}{\int{\frac{1}{u} d u}}}$$
Funktion $$$\frac{1}{u}$$$ integraali on $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$x + {\color{red}{\int{\frac{1}{u} d u}}} = x + {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
Muista, että $$$u=x - 1$$$:
$$x + \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = x + \ln{\left(\left|{{\color{red}{\left(x - 1\right)}}}\right| \right)}$$
Näin ollen,
$$\int{\frac{x}{x - 1} d x} = x + \ln{\left(\left|{x - 1}\right| \right)}$$
Lisää integrointivakio:
$$\int{\frac{x}{x - 1} d x} = x + \ln{\left(\left|{x - 1}\right| \right)}+C$$
Vastaus
$$$\int \frac{x}{x - 1}\, dx = \left(x + \ln\left(\left|{x - 1}\right|\right)\right) + C$$$A