$$$\frac{x}{x - 1}$$$ 的积分
您的输入
求$$$\int \frac{x}{x - 1}\, dx$$$。
解答
改写并拆分该分式:
$${\color{red}{\int{\frac{x}{x - 1} d x}}} = {\color{red}{\int{\left(1 + \frac{1}{x - 1}\right)d x}}}$$
逐项积分:
$${\color{red}{\int{\left(1 + \frac{1}{x - 1}\right)d x}}} = {\color{red}{\left(\int{1 d x} + \int{\frac{1}{x - 1} d x}\right)}}$$
应用常数法则 $$$\int c\, dx = c x$$$,使用 $$$c=1$$$:
$$\int{\frac{1}{x - 1} d x} + {\color{red}{\int{1 d x}}} = \int{\frac{1}{x - 1} d x} + {\color{red}{x}}$$
设$$$u=x - 1$$$。
则$$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$ (步骤见»),并有$$$dx = du$$$。
因此,
$$x + {\color{red}{\int{\frac{1}{x - 1} d x}}} = x + {\color{red}{\int{\frac{1}{u} d u}}}$$
$$$\frac{1}{u}$$$ 的积分为 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$x + {\color{red}{\int{\frac{1}{u} d u}}} = x + {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
回忆一下 $$$u=x - 1$$$:
$$x + \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = x + \ln{\left(\left|{{\color{red}{\left(x - 1\right)}}}\right| \right)}$$
因此,
$$\int{\frac{x}{x - 1} d x} = x + \ln{\left(\left|{x - 1}\right| \right)}$$
加上积分常数:
$$\int{\frac{x}{x - 1} d x} = x + \ln{\left(\left|{x - 1}\right| \right)}+C$$
答案
$$$\int \frac{x}{x - 1}\, dx = \left(x + \ln\left(\left|{x - 1}\right|\right)\right) + C$$$A