Integral of $$$\frac{x}{x - 1}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{x}{x - 1}\, dx$$$.
Solution
Rewrite and split the fraction:
$${\color{red}{\int{\frac{x}{x - 1} d x}}} = {\color{red}{\int{\left(1 + \frac{1}{x - 1}\right)d x}}}$$
Integrate term by term:
$${\color{red}{\int{\left(1 + \frac{1}{x - 1}\right)d x}}} = {\color{red}{\left(\int{1 d x} + \int{\frac{1}{x - 1} d x}\right)}}$$
Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=1$$$:
$$\int{\frac{1}{x - 1} d x} + {\color{red}{\int{1 d x}}} = \int{\frac{1}{x - 1} d x} + {\color{red}{x}}$$
Let $$$u=x - 1$$$.
Then $$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$ (steps can be seen »), and we have that $$$dx = du$$$.
The integral becomes
$$x + {\color{red}{\int{\frac{1}{x - 1} d x}}} = x + {\color{red}{\int{\frac{1}{u} d u}}}$$
The integral of $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$x + {\color{red}{\int{\frac{1}{u} d u}}} = x + {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
Recall that $$$u=x - 1$$$:
$$x + \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = x + \ln{\left(\left|{{\color{red}{\left(x - 1\right)}}}\right| \right)}$$
Therefore,
$$\int{\frac{x}{x - 1} d x} = x + \ln{\left(\left|{x - 1}\right| \right)}$$
Add the constant of integration:
$$\int{\frac{x}{x - 1} d x} = x + \ln{\left(\left|{x - 1}\right| \right)}+C$$
Answer
$$$\int \frac{x}{x - 1}\, dx = \left(x + \ln\left(\left|{x - 1}\right|\right)\right) + C$$$A