Integraali $$$\frac{n x \sin{\left(c \right)}}{k}$$$:stä muuttujan $$$x$$$ suhteen

Laskin löytää funktion $$$\frac{n x \sin{\left(c \right)}}{k}$$$ integraalin/kantafunktion muuttujan $$$x$$$ suhteen ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int \frac{n x \sin{\left(c \right)}}{k}\, dx$$$.

Ratkaisu

Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=\frac{n \sin{\left(c \right)}}{k}$$$ ja $$$f{\left(x \right)} = x$$$:

$${\color{red}{\int{\frac{n x \sin{\left(c \right)}}{k} d x}}} = {\color{red}{\frac{n \sin{\left(c \right)} \int{x d x}}{k}}}$$

Sovella potenssisääntöä $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ käyttäen $$$n=1$$$:

$$\frac{n \sin{\left(c \right)} {\color{red}{\int{x d x}}}}{k}=\frac{n \sin{\left(c \right)} {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}}{k}=\frac{n \sin{\left(c \right)} {\color{red}{\left(\frac{x^{2}}{2}\right)}}}{k}$$

Näin ollen,

$$\int{\frac{n x \sin{\left(c \right)}}{k} d x} = \frac{n x^{2} \sin{\left(c \right)}}{2 k}$$

Lisää integrointivakio:

$$\int{\frac{n x \sin{\left(c \right)}}{k} d x} = \frac{n x^{2} \sin{\left(c \right)}}{2 k}+C$$

Vastaus

$$$\int \frac{n x \sin{\left(c \right)}}{k}\, dx = \frac{n x^{2} \sin{\left(c \right)}}{2 k} + C$$$A


Please try a new game Rotatly