$$$\frac{n x \sin{\left(c \right)}}{k}$$$ 关于$$$x$$$的积分
您的输入
求$$$\int \frac{n x \sin{\left(c \right)}}{k}\, dx$$$。
解答
对 $$$c=\frac{n \sin{\left(c \right)}}{k}$$$ 和 $$$f{\left(x \right)} = x$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$${\color{red}{\int{\frac{n x \sin{\left(c \right)}}{k} d x}}} = {\color{red}{\frac{n \sin{\left(c \right)} \int{x d x}}{k}}}$$
应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=1$$$:
$$\frac{n \sin{\left(c \right)} {\color{red}{\int{x d x}}}}{k}=\frac{n \sin{\left(c \right)} {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}}{k}=\frac{n \sin{\left(c \right)} {\color{red}{\left(\frac{x^{2}}{2}\right)}}}{k}$$
因此,
$$\int{\frac{n x \sin{\left(c \right)}}{k} d x} = \frac{n x^{2} \sin{\left(c \right)}}{2 k}$$
加上积分常数:
$$\int{\frac{n x \sin{\left(c \right)}}{k} d x} = \frac{n x^{2} \sin{\left(c \right)}}{2 k}+C$$
答案
$$$\int \frac{n x \sin{\left(c \right)}}{k}\, dx = \frac{n x^{2} \sin{\left(c \right)}}{2 k} + C$$$A