Integraali $$$\ln\left(x y\right)$$$:stä muuttujan $$$x$$$ suhteen
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int \ln\left(x y\right)\, dx$$$.
Ratkaisu
Olkoon $$$u=x y$$$.
Tällöin $$$du=\left(x y\right)^{\prime }dx = y dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$dx = \frac{du}{y}$$$.
Näin ollen,
$${\color{red}{\int{\ln{\left(x y \right)} d x}}} = {\color{red}{\int{\frac{\ln{\left(u \right)}}{y} d u}}}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=\frac{1}{y}$$$ ja $$$f{\left(u \right)} = \ln{\left(u \right)}$$$:
$${\color{red}{\int{\frac{\ln{\left(u \right)}}{y} d u}}} = {\color{red}{\frac{\int{\ln{\left(u \right)} d u}}{y}}}$$
Integraalin $$$\int{\ln{\left(u \right)} d u}$$$ kohdalla käytä osittaisintegrointia $$$\int \operatorname{m} \operatorname{dv} = \operatorname{m}\operatorname{v} - \int \operatorname{v} \operatorname{dm}$$$.
Olkoon $$$\operatorname{m}=\ln{\left(u \right)}$$$ ja $$$\operatorname{dv}=du$$$.
Tällöin $$$\operatorname{dm}=\left(\ln{\left(u \right)}\right)^{\prime }du=\frac{du}{u}$$$ (vaiheet ovat nähtävissä ») ja $$$\operatorname{v}=\int{1 d u}=u$$$ (vaiheet ovat nähtävissä »).
Integraali muuttuu muotoon
$$\frac{{\color{red}{\int{\ln{\left(u \right)} d u}}}}{y}=\frac{{\color{red}{\left(\ln{\left(u \right)} \cdot u-\int{u \cdot \frac{1}{u} d u}\right)}}}{y}=\frac{{\color{red}{\left(u \ln{\left(u \right)} - \int{1 d u}\right)}}}{y}$$
Sovella vakiosääntöä $$$\int c\, du = c u$$$ käyttäen $$$c=1$$$:
$$\frac{u \ln{\left(u \right)} - {\color{red}{\int{1 d u}}}}{y} = \frac{u \ln{\left(u \right)} - {\color{red}{u}}}{y}$$
Muista, että $$$u=x y$$$:
$$\frac{- {\color{red}{u}} + {\color{red}{u}} \ln{\left({\color{red}{u}} \right)}}{y} = \frac{- {\color{red}{x y}} + {\color{red}{x y}} \ln{\left({\color{red}{x y}} \right)}}{y}$$
Näin ollen,
$$\int{\ln{\left(x y \right)} d x} = \frac{x y \ln{\left(x y \right)} - x y}{y}$$
Sievennä:
$$\int{\ln{\left(x y \right)} d x} = x \left(\ln{\left(x y \right)} - 1\right)$$
Lisää integrointivakio:
$$\int{\ln{\left(x y \right)} d x} = x \left(\ln{\left(x y \right)} - 1\right)+C$$
Vastaus
$$$\int \ln\left(x y\right)\, dx = x \left(\ln\left(x y\right) - 1\right) + C$$$A