$$$x$$$ değişkenine göre $$$\ln\left(x y\right)$$$ fonksiyonunun integrali

Hesaplayıcı, $$$x$$$ değişkenine göre $$$\ln\left(x y\right)$$$ fonksiyonunun integralini/antitürevini bulur ve adım adım gösterir.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \ln\left(x y\right)\, dx$$$.

Çözüm

$$$u=x y$$$ olsun.

Böylece $$$du=\left(x y\right)^{\prime }dx = y dx$$$ (adımlar » görülebilir) ve $$$dx = \frac{du}{y}$$$ elde ederiz.

Dolayısıyla,

$${\color{red}{\int{\ln{\left(x y \right)} d x}}} = {\color{red}{\int{\frac{\ln{\left(u \right)}}{y} d u}}}$$

Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=\frac{1}{y}$$$ ve $$$f{\left(u \right)} = \ln{\left(u \right)}$$$ ile uygula:

$${\color{red}{\int{\frac{\ln{\left(u \right)}}{y} d u}}} = {\color{red}{\frac{\int{\ln{\left(u \right)} d u}}{y}}}$$

$$$\int{\ln{\left(u \right)} d u}$$$ integrali için, kısmi integrasyonu $$$\int \operatorname{m} \operatorname{dv} = \operatorname{m}\operatorname{v} - \int \operatorname{v} \operatorname{dm}$$$ kullanın.

$$$\operatorname{m}=\ln{\left(u \right)}$$$ ve $$$\operatorname{dv}=du$$$ olsun.

O halde $$$\operatorname{dm}=\left(\ln{\left(u \right)}\right)^{\prime }du=\frac{du}{u}$$$ (adımlar için bkz. ») ve $$$\operatorname{v}=\int{1 d u}=u$$$ (adımlar için bkz. »).

Dolayısıyla,

$$\frac{{\color{red}{\int{\ln{\left(u \right)} d u}}}}{y}=\frac{{\color{red}{\left(\ln{\left(u \right)} \cdot u-\int{u \cdot \frac{1}{u} d u}\right)}}}{y}=\frac{{\color{red}{\left(u \ln{\left(u \right)} - \int{1 d u}\right)}}}{y}$$

$$$c=1$$$ kullanarak $$$\int c\, du = c u$$$ sabit kuralını uygula:

$$\frac{u \ln{\left(u \right)} - {\color{red}{\int{1 d u}}}}{y} = \frac{u \ln{\left(u \right)} - {\color{red}{u}}}{y}$$

Hatırlayın ki $$$u=x y$$$:

$$\frac{- {\color{red}{u}} + {\color{red}{u}} \ln{\left({\color{red}{u}} \right)}}{y} = \frac{- {\color{red}{x y}} + {\color{red}{x y}} \ln{\left({\color{red}{x y}} \right)}}{y}$$

Dolayısıyla,

$$\int{\ln{\left(x y \right)} d x} = \frac{x y \ln{\left(x y \right)} - x y}{y}$$

Sadeleştirin:

$$\int{\ln{\left(x y \right)} d x} = x \left(\ln{\left(x y \right)} - 1\right)$$

İntegrasyon sabitini ekleyin:

$$\int{\ln{\left(x y \right)} d x} = x \left(\ln{\left(x y \right)} - 1\right)+C$$

Cevap

$$$\int \ln\left(x y\right)\, dx = x \left(\ln\left(x y\right) - 1\right) + C$$$A


Please try a new game Rotatly