Funktion $$$\cos{\left(43 \theta \right)}$$$ integraali
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int \cos{\left(43 \theta \right)}\, d\theta$$$.
Ratkaisu
Olkoon $$$u=43 \theta$$$.
Tällöin $$$du=\left(43 \theta\right)^{\prime }d\theta = 43 d\theta$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$d\theta = \frac{du}{43}$$$.
Näin ollen,
$${\color{red}{\int{\cos{\left(43 \theta \right)} d \theta}}} = {\color{red}{\int{\frac{\cos{\left(u \right)}}{43} d u}}}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=\frac{1}{43}$$$ ja $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$${\color{red}{\int{\frac{\cos{\left(u \right)}}{43} d u}}} = {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{43}\right)}}$$
Kosinin integraali on $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$\frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{43} = \frac{{\color{red}{\sin{\left(u \right)}}}}{43}$$
Muista, että $$$u=43 \theta$$$:
$$\frac{\sin{\left({\color{red}{u}} \right)}}{43} = \frac{\sin{\left({\color{red}{\left(43 \theta\right)}} \right)}}{43}$$
Näin ollen,
$$\int{\cos{\left(43 \theta \right)} d \theta} = \frac{\sin{\left(43 \theta \right)}}{43}$$
Lisää integrointivakio:
$$\int{\cos{\left(43 \theta \right)} d \theta} = \frac{\sin{\left(43 \theta \right)}}{43}+C$$
Vastaus
$$$\int \cos{\left(43 \theta \right)}\, d\theta = \frac{\sin{\left(43 \theta \right)}}{43} + C$$$A