$$$\cos{\left(43 \theta \right)}$$$ 的積分
您的輸入
求$$$\int \cos{\left(43 \theta \right)}\, d\theta$$$。
解答
令 $$$u=43 \theta$$$。
則 $$$du=\left(43 \theta\right)^{\prime }d\theta = 43 d\theta$$$ (步驟見»),並可得 $$$d\theta = \frac{du}{43}$$$。
因此,
$${\color{red}{\int{\cos{\left(43 \theta \right)} d \theta}}} = {\color{red}{\int{\frac{\cos{\left(u \right)}}{43} d u}}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{43}$$$ 與 $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$${\color{red}{\int{\frac{\cos{\left(u \right)}}{43} d u}}} = {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{43}\right)}}$$
餘弦函數的積分為 $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$\frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{43} = \frac{{\color{red}{\sin{\left(u \right)}}}}{43}$$
回顧一下 $$$u=43 \theta$$$:
$$\frac{\sin{\left({\color{red}{u}} \right)}}{43} = \frac{\sin{\left({\color{red}{\left(43 \theta\right)}} \right)}}{43}$$
因此,
$$\int{\cos{\left(43 \theta \right)} d \theta} = \frac{\sin{\left(43 \theta \right)}}{43}$$
加上積分常數:
$$\int{\cos{\left(43 \theta \right)} d \theta} = \frac{\sin{\left(43 \theta \right)}}{43}+C$$
答案
$$$\int \cos{\left(43 \theta \right)}\, d\theta = \frac{\sin{\left(43 \theta \right)}}{43} + C$$$A