Integraali $$$a^{- x}$$$:stä muuttujan $$$x$$$ suhteen

Laskin löytää funktion $$$a^{- x}$$$ integraalin/kantafunktion muuttujan $$$x$$$ suhteen ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int a^{- x}\, dx$$$.

Ratkaisu

Olkoon $$$u=- x$$$.

Tällöin $$$du=\left(- x\right)^{\prime }dx = - dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$dx = - du$$$.

Integraali voidaan kirjoittaa muotoon

$${\color{red}{\int{a^{- x} d x}}} = {\color{red}{\int{\left(- a^{u}\right)d u}}}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=-1$$$ ja $$$f{\left(u \right)} = a^{u}$$$:

$${\color{red}{\int{\left(- a^{u}\right)d u}}} = {\color{red}{\left(- \int{a^{u} d u}\right)}}$$

Apply the exponential rule $$$\int{a^{u} d u} = \frac{a^{u}}{\ln{\left(a \right)}}$$$ with $$$a=a$$$:

$$- {\color{red}{\int{a^{u} d u}}} = - {\color{red}{\frac{a^{u}}{\ln{\left(a \right)}}}}$$

Muista, että $$$u=- x$$$:

$$- \frac{a^{{\color{red}{u}}}}{\ln{\left(a \right)}} = - \frac{a^{{\color{red}{\left(- x\right)}}}}{\ln{\left(a \right)}}$$

Näin ollen,

$$\int{a^{- x} d x} = - \frac{a^{- x}}{\ln{\left(a \right)}}$$

Lisää integrointivakio:

$$\int{a^{- x} d x} = - \frac{a^{- x}}{\ln{\left(a \right)}}+C$$

Vastaus

$$$\int a^{- x}\, dx = - \frac{a^{- x}}{\ln\left(a\right)} + C$$$A


Please try a new game Rotatly