Funktion $$$8 \sqrt[3]{x}$$$ integraali

Laskin löytää funktion $$$8 \sqrt[3]{x}$$$ integraalin/alkufunktion ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int 8 \sqrt[3]{x}\, dx$$$.

Ratkaisu

Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=8$$$ ja $$$f{\left(x \right)} = \sqrt[3]{x}$$$:

$${\color{red}{\int{8 \sqrt[3]{x} d x}}} = {\color{red}{\left(8 \int{\sqrt[3]{x} d x}\right)}}$$

Sovella potenssisääntöä $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ käyttäen $$$n=\frac{1}{3}$$$:

$$8 {\color{red}{\int{\sqrt[3]{x} d x}}}=8 {\color{red}{\int{x^{\frac{1}{3}} d x}}}=8 {\color{red}{\frac{x^{\frac{1}{3} + 1}}{\frac{1}{3} + 1}}}=8 {\color{red}{\left(\frac{3 x^{\frac{4}{3}}}{4}\right)}}$$

Näin ollen,

$$\int{8 \sqrt[3]{x} d x} = 6 x^{\frac{4}{3}}$$

Lisää integrointivakio:

$$\int{8 \sqrt[3]{x} d x} = 6 x^{\frac{4}{3}}+C$$

Vastaus

$$$\int 8 \sqrt[3]{x}\, dx = 6 x^{\frac{4}{3}} + C$$$A


Please try a new game Rotatly