Intégrale de $$$8 \sqrt[3]{x}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int 8 \sqrt[3]{x}\, dx$$$.
Solution
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=8$$$ et $$$f{\left(x \right)} = \sqrt[3]{x}$$$ :
$${\color{red}{\int{8 \sqrt[3]{x} d x}}} = {\color{red}{\left(8 \int{\sqrt[3]{x} d x}\right)}}$$
Appliquer la règle de puissance $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=\frac{1}{3}$$$ :
$$8 {\color{red}{\int{\sqrt[3]{x} d x}}}=8 {\color{red}{\int{x^{\frac{1}{3}} d x}}}=8 {\color{red}{\frac{x^{\frac{1}{3} + 1}}{\frac{1}{3} + 1}}}=8 {\color{red}{\left(\frac{3 x^{\frac{4}{3}}}{4}\right)}}$$
Par conséquent,
$$\int{8 \sqrt[3]{x} d x} = 6 x^{\frac{4}{3}}$$
Ajouter la constante d'intégration :
$$\int{8 \sqrt[3]{x} d x} = 6 x^{\frac{4}{3}}+C$$
Réponse
$$$\int 8 \sqrt[3]{x}\, dx = 6 x^{\frac{4}{3}} + C$$$A