Integrale di $$$8 \sqrt[3]{x}$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int 8 \sqrt[3]{x}\, dx$$$.
Soluzione
Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=8$$$ e $$$f{\left(x \right)} = \sqrt[3]{x}$$$:
$${\color{red}{\int{8 \sqrt[3]{x} d x}}} = {\color{red}{\left(8 \int{\sqrt[3]{x} d x}\right)}}$$
Applica la regola della potenza $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=\frac{1}{3}$$$:
$$8 {\color{red}{\int{\sqrt[3]{x} d x}}}=8 {\color{red}{\int{x^{\frac{1}{3}} d x}}}=8 {\color{red}{\frac{x^{\frac{1}{3} + 1}}{\frac{1}{3} + 1}}}=8 {\color{red}{\left(\frac{3 x^{\frac{4}{3}}}{4}\right)}}$$
Pertanto,
$$\int{8 \sqrt[3]{x} d x} = 6 x^{\frac{4}{3}}$$
Aggiungi la costante di integrazione:
$$\int{8 \sqrt[3]{x} d x} = 6 x^{\frac{4}{3}}+C$$
Risposta
$$$\int 8 \sqrt[3]{x}\, dx = 6 x^{\frac{4}{3}} + C$$$A