Funktion $$$- 2 y^{58} - 12$$$ integraali

Laskin löytää funktion $$$- 2 y^{58} - 12$$$ integraalin/alkufunktion ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int \left(- 2 y^{58} - 12\right)\, dy$$$.

Ratkaisu

Integroi termi kerrallaan:

$${\color{red}{\int{\left(- 2 y^{58} - 12\right)d y}}} = {\color{red}{\left(- \int{12 d y} - \int{2 y^{58} d y}\right)}}$$

Sovella vakiosääntöä $$$\int c\, dy = c y$$$ käyttäen $$$c=12$$$:

$$- \int{2 y^{58} d y} - {\color{red}{\int{12 d y}}} = - \int{2 y^{58} d y} - {\color{red}{\left(12 y\right)}}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(y \right)}\, dy = c \int f{\left(y \right)}\, dy$$$ käyttäen $$$c=2$$$ ja $$$f{\left(y \right)} = y^{58}$$$:

$$- 12 y - {\color{red}{\int{2 y^{58} d y}}} = - 12 y - {\color{red}{\left(2 \int{y^{58} d y}\right)}}$$

Sovella potenssisääntöä $$$\int y^{n}\, dy = \frac{y^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ käyttäen $$$n=58$$$:

$$- 12 y - 2 {\color{red}{\int{y^{58} d y}}}=- 12 y - 2 {\color{red}{\frac{y^{1 + 58}}{1 + 58}}}=- 12 y - 2 {\color{red}{\left(\frac{y^{59}}{59}\right)}}$$

Näin ollen,

$$\int{\left(- 2 y^{58} - 12\right)d y} = - \frac{2 y^{59}}{59} - 12 y$$

Sievennä:

$$\int{\left(- 2 y^{58} - 12\right)d y} = \frac{2 y \left(- y^{58} - 354\right)}{59}$$

Lisää integrointivakio:

$$\int{\left(- 2 y^{58} - 12\right)d y} = \frac{2 y \left(- y^{58} - 354\right)}{59}+C$$

Vastaus

$$$\int \left(- 2 y^{58} - 12\right)\, dy = \frac{2 y \left(- y^{58} - 354\right)}{59} + C$$$A


Please try a new game Rotatly