$$$- 2 y^{58} - 12$$$の積分

この計算機は、手順を示しながら$$$- 2 y^{58} - 12$$$の不定積分(原始関数)を求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int \left(- 2 y^{58} - 12\right)\, dy$$$ を求めよ。

解答

項別に積分せよ:

$${\color{red}{\int{\left(- 2 y^{58} - 12\right)d y}}} = {\color{red}{\left(- \int{12 d y} - \int{2 y^{58} d y}\right)}}$$

$$$c=12$$$ に対して定数則 $$$\int c\, dy = c y$$$ を適用する:

$$- \int{2 y^{58} d y} - {\color{red}{\int{12 d y}}} = - \int{2 y^{58} d y} - {\color{red}{\left(12 y\right)}}$$

定数倍の法則 $$$\int c f{\left(y \right)}\, dy = c \int f{\left(y \right)}\, dy$$$ を、$$$c=2$$$$$$f{\left(y \right)} = y^{58}$$$ に対して適用する:

$$- 12 y - {\color{red}{\int{2 y^{58} d y}}} = - 12 y - {\color{red}{\left(2 \int{y^{58} d y}\right)}}$$

$$$n=58$$$ を用いて、べき乗の法則 $$$\int y^{n}\, dy = \frac{y^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:

$$- 12 y - 2 {\color{red}{\int{y^{58} d y}}}=- 12 y - 2 {\color{red}{\frac{y^{1 + 58}}{1 + 58}}}=- 12 y - 2 {\color{red}{\left(\frac{y^{59}}{59}\right)}}$$

したがって、

$$\int{\left(- 2 y^{58} - 12\right)d y} = - \frac{2 y^{59}}{59} - 12 y$$

簡単化せよ:

$$\int{\left(- 2 y^{58} - 12\right)d y} = \frac{2 y \left(- y^{58} - 354\right)}{59}$$

積分定数を加える:

$$\int{\left(- 2 y^{58} - 12\right)d y} = \frac{2 y \left(- y^{58} - 354\right)}{59}+C$$

解答

$$$\int \left(- 2 y^{58} - 12\right)\, dy = \frac{2 y \left(- y^{58} - 354\right)}{59} + C$$$A


Please try a new game Rotatly