$$$- 2 y^{58} - 12$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$- 2 y^{58} - 12$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \left(- 2 y^{58} - 12\right)\, dy$$$.

Çözüm

Her terimin integralini alın:

$${\color{red}{\int{\left(- 2 y^{58} - 12\right)d y}}} = {\color{red}{\left(- \int{12 d y} - \int{2 y^{58} d y}\right)}}$$

$$$c=12$$$ kullanarak $$$\int c\, dy = c y$$$ sabit kuralını uygula:

$$- \int{2 y^{58} d y} - {\color{red}{\int{12 d y}}} = - \int{2 y^{58} d y} - {\color{red}{\left(12 y\right)}}$$

Sabit katsayı kuralı $$$\int c f{\left(y \right)}\, dy = c \int f{\left(y \right)}\, dy$$$'i $$$c=2$$$ ve $$$f{\left(y \right)} = y^{58}$$$ ile uygula:

$$- 12 y - {\color{red}{\int{2 y^{58} d y}}} = - 12 y - {\color{red}{\left(2 \int{y^{58} d y}\right)}}$$

Kuvvet kuralını $$$\int y^{n}\, dy = \frac{y^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=58$$$ ile uygulayın:

$$- 12 y - 2 {\color{red}{\int{y^{58} d y}}}=- 12 y - 2 {\color{red}{\frac{y^{1 + 58}}{1 + 58}}}=- 12 y - 2 {\color{red}{\left(\frac{y^{59}}{59}\right)}}$$

Dolayısıyla,

$$\int{\left(- 2 y^{58} - 12\right)d y} = - \frac{2 y^{59}}{59} - 12 y$$

Sadeleştirin:

$$\int{\left(- 2 y^{58} - 12\right)d y} = \frac{2 y \left(- y^{58} - 354\right)}{59}$$

İntegrasyon sabitini ekleyin:

$$\int{\left(- 2 y^{58} - 12\right)d y} = \frac{2 y \left(- y^{58} - 354\right)}{59}+C$$

Cevap

$$$\int \left(- 2 y^{58} - 12\right)\, dy = \frac{2 y \left(- y^{58} - 354\right)}{59} + C$$$A


Please try a new game Rotatly