Funktion $$$2 e^{- 2 x}$$$ integraali

Laskin löytää funktion $$$2 e^{- 2 x}$$$ integraalin/alkufunktion ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int 2 e^{- 2 x}\, dx$$$.

Ratkaisu

Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=2$$$ ja $$$f{\left(x \right)} = e^{- 2 x}$$$:

$${\color{red}{\int{2 e^{- 2 x} d x}}} = {\color{red}{\left(2 \int{e^{- 2 x} d x}\right)}}$$

Olkoon $$$u=- 2 x$$$.

Tällöin $$$du=\left(- 2 x\right)^{\prime }dx = - 2 dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$dx = - \frac{du}{2}$$$.

Näin ollen,

$$2 {\color{red}{\int{e^{- 2 x} d x}}} = 2 {\color{red}{\int{\left(- \frac{e^{u}}{2}\right)d u}}}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=- \frac{1}{2}$$$ ja $$$f{\left(u \right)} = e^{u}$$$:

$$2 {\color{red}{\int{\left(- \frac{e^{u}}{2}\right)d u}}} = 2 {\color{red}{\left(- \frac{\int{e^{u} d u}}{2}\right)}}$$

Eksponenttifunktion integraali on $$$\int{e^{u} d u} = e^{u}$$$:

$$- {\color{red}{\int{e^{u} d u}}} = - {\color{red}{e^{u}}}$$

Muista, että $$$u=- 2 x$$$:

$$- e^{{\color{red}{u}}} = - e^{{\color{red}{\left(- 2 x\right)}}}$$

Näin ollen,

$$\int{2 e^{- 2 x} d x} = - e^{- 2 x}$$

Lisää integrointivakio:

$$\int{2 e^{- 2 x} d x} = - e^{- 2 x}+C$$

Vastaus

$$$\int 2 e^{- 2 x}\, dx = - e^{- 2 x} + C$$$A


Please try a new game Rotatly