Funktion $$$\frac{1}{x^{4}}$$$ integraali
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int \frac{1}{x^{4}}\, dx$$$.
Ratkaisu
Sovella potenssisääntöä $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ käyttäen $$$n=-4$$$:
$${\color{red}{\int{\frac{1}{x^{4}} d x}}}={\color{red}{\int{x^{-4} d x}}}={\color{red}{\frac{x^{-4 + 1}}{-4 + 1}}}={\color{red}{\left(- \frac{x^{-3}}{3}\right)}}={\color{red}{\left(- \frac{1}{3 x^{3}}\right)}}$$
Näin ollen,
$$\int{\frac{1}{x^{4}} d x} = - \frac{1}{3 x^{3}}$$
Lisää integrointivakio:
$$\int{\frac{1}{x^{4}} d x} = - \frac{1}{3 x^{3}}+C$$
Vastaus
$$$\int \frac{1}{x^{4}}\, dx = - \frac{1}{3 x^{3}} + C$$$A