Integraali $$$\frac{1}{a^{2} - x^{2}}$$$:stä muuttujan $$$x$$$ suhteen
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int \frac{1}{a^{2} - x^{2}}\, dx$$$.
Ratkaisu
Hajota osamurtoihin:
$${\color{red}{\int{\frac{1}{a^{2} - x^{2}} d x}}} = {\color{red}{\int{\left(\frac{1}{2 a \left(a + x\right)} - \frac{1}{2 a \left(- a + x\right)}\right)d x}}}$$
Integroi termi kerrallaan:
$${\color{red}{\int{\left(\frac{1}{2 a \left(a + x\right)} - \frac{1}{2 a \left(- a + x\right)}\right)d x}}} = {\color{red}{\left(- \int{\frac{1}{2 a \left(- a + x\right)} d x} + \int{\frac{1}{2 a \left(a + x\right)} d x}\right)}}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=\frac{1}{2 a}$$$ ja $$$f{\left(x \right)} = \frac{1}{a + x}$$$:
$$- \int{\frac{1}{2 a \left(- a + x\right)} d x} + {\color{red}{\int{\frac{1}{2 a \left(a + x\right)} d x}}} = - \int{\frac{1}{2 a \left(- a + x\right)} d x} + {\color{red}{\left(\frac{\int{\frac{1}{a + x} d x}}{2 a}\right)}}$$
Olkoon $$$u=a + x$$$.
Tällöin $$$du=\left(a + x\right)^{\prime }dx = 1 dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$dx = du$$$.
Näin ollen,
$$- \int{\frac{1}{2 a \left(- a + x\right)} d x} + \frac{{\color{red}{\int{\frac{1}{a + x} d x}}}}{2 a} = - \int{\frac{1}{2 a \left(- a + x\right)} d x} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2 a}$$
Funktion $$$\frac{1}{u}$$$ integraali on $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- \int{\frac{1}{2 a \left(- a + x\right)} d x} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2 a} = - \int{\frac{1}{2 a \left(- a + x\right)} d x} + \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2 a}$$
Muista, että $$$u=a + x$$$:
$$- \int{\frac{1}{2 a \left(- a + x\right)} d x} + \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2 a} = - \int{\frac{1}{2 a \left(- a + x\right)} d x} + \frac{\ln{\left(\left|{{\color{red}{\left(a + x\right)}}}\right| \right)}}{2 a}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=\frac{1}{2 a}$$$ ja $$$f{\left(x \right)} = \frac{1}{- a + x}$$$:
$$- {\color{red}{\int{\frac{1}{2 a \left(- a + x\right)} d x}}} + \frac{\ln{\left(\left|{a + x}\right| \right)}}{2 a} = - {\color{red}{\left(\frac{\int{\frac{1}{- a + x} d x}}{2 a}\right)}} + \frac{\ln{\left(\left|{a + x}\right| \right)}}{2 a}$$
Olkoon $$$u=- a + x$$$.
Tällöin $$$du=\left(- a + x\right)^{\prime }dx = 1 dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$dx = du$$$.
Näin ollen,
$$\frac{\ln{\left(\left|{a + x}\right| \right)}}{2 a} - \frac{{\color{red}{\int{\frac{1}{- a + x} d x}}}}{2 a} = \frac{\ln{\left(\left|{a + x}\right| \right)}}{2 a} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2 a}$$
Funktion $$$\frac{1}{u}$$$ integraali on $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\frac{\ln{\left(\left|{a + x}\right| \right)}}{2 a} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2 a} = \frac{\ln{\left(\left|{a + x}\right| \right)}}{2 a} - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2 a}$$
Muista, että $$$u=- a + x$$$:
$$\frac{\ln{\left(\left|{a + x}\right| \right)}}{2 a} - \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2 a} = \frac{\ln{\left(\left|{a + x}\right| \right)}}{2 a} - \frac{\ln{\left(\left|{{\color{red}{\left(- a + x\right)}}}\right| \right)}}{2 a}$$
Näin ollen,
$$\int{\frac{1}{a^{2} - x^{2}} d x} = - \frac{\ln{\left(\left|{a - x}\right| \right)}}{2 a} + \frac{\ln{\left(\left|{a + x}\right| \right)}}{2 a}$$
Sievennä:
$$\int{\frac{1}{a^{2} - x^{2}} d x} = \frac{- \ln{\left(\left|{a - x}\right| \right)} + \ln{\left(\left|{a + x}\right| \right)}}{2 a}$$
Lisää integrointivakio:
$$\int{\frac{1}{a^{2} - x^{2}} d x} = \frac{- \ln{\left(\left|{a - x}\right| \right)} + \ln{\left(\left|{a + x}\right| \right)}}{2 a}+C$$
Vastaus
$$$\int \frac{1}{a^{2} - x^{2}}\, dx = \frac{- \ln\left(\left|{a - x}\right|\right) + \ln\left(\left|{a + x}\right|\right)}{2 a} + C$$$A