Ολοκλήρωμα της $$$\frac{1}{a^{2} - x^{2}}$$$ ως προς $$$x$$$

Ο υπολογιστής θα βρει το ολοκλήρωμα/αντιπαράγωγο της $$$\frac{1}{a^{2} - x^{2}}$$$ ως προς $$$x$$$, με εμφάνιση βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int \frac{1}{a^{2} - x^{2}}\, dx$$$.

Λύση

Εκτέλεση ανάλυσης σε μερικά κλάσματα:

$${\color{red}{\int{\frac{1}{a^{2} - x^{2}} d x}}} = {\color{red}{\int{\left(\frac{1}{2 a \left(a + x\right)} - \frac{1}{2 a \left(- a + x\right)}\right)d x}}}$$

Ολοκληρώστε όρο προς όρο:

$${\color{red}{\int{\left(\frac{1}{2 a \left(a + x\right)} - \frac{1}{2 a \left(- a + x\right)}\right)d x}}} = {\color{red}{\left(- \int{\frac{1}{2 a \left(- a + x\right)} d x} + \int{\frac{1}{2 a \left(a + x\right)} d x}\right)}}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=\frac{1}{2 a}$$$ και $$$f{\left(x \right)} = \frac{1}{a + x}$$$:

$$- \int{\frac{1}{2 a \left(- a + x\right)} d x} + {\color{red}{\int{\frac{1}{2 a \left(a + x\right)} d x}}} = - \int{\frac{1}{2 a \left(- a + x\right)} d x} + {\color{red}{\left(\frac{\int{\frac{1}{a + x} d x}}{2 a}\right)}}$$

Έστω $$$u=a + x$$$.

Τότε $$$du=\left(a + x\right)^{\prime }dx = 1 dx$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$dx = du$$$.

Το ολοκλήρωμα γίνεται

$$- \int{\frac{1}{2 a \left(- a + x\right)} d x} + \frac{{\color{red}{\int{\frac{1}{a + x} d x}}}}{2 a} = - \int{\frac{1}{2 a \left(- a + x\right)} d x} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2 a}$$

Το ολοκλήρωμα του $$$\frac{1}{u}$$$ είναι $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$- \int{\frac{1}{2 a \left(- a + x\right)} d x} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2 a} = - \int{\frac{1}{2 a \left(- a + x\right)} d x} + \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2 a}$$

Θυμηθείτε ότι $$$u=a + x$$$:

$$- \int{\frac{1}{2 a \left(- a + x\right)} d x} + \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2 a} = - \int{\frac{1}{2 a \left(- a + x\right)} d x} + \frac{\ln{\left(\left|{{\color{red}{\left(a + x\right)}}}\right| \right)}}{2 a}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=\frac{1}{2 a}$$$ και $$$f{\left(x \right)} = \frac{1}{- a + x}$$$:

$$- {\color{red}{\int{\frac{1}{2 a \left(- a + x\right)} d x}}} + \frac{\ln{\left(\left|{a + x}\right| \right)}}{2 a} = - {\color{red}{\left(\frac{\int{\frac{1}{- a + x} d x}}{2 a}\right)}} + \frac{\ln{\left(\left|{a + x}\right| \right)}}{2 a}$$

Έστω $$$u=- a + x$$$.

Τότε $$$du=\left(- a + x\right)^{\prime }dx = 1 dx$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$dx = du$$$.

Το ολοκλήρωμα μπορεί να επαναγραφεί ως

$$\frac{\ln{\left(\left|{a + x}\right| \right)}}{2 a} - \frac{{\color{red}{\int{\frac{1}{- a + x} d x}}}}{2 a} = \frac{\ln{\left(\left|{a + x}\right| \right)}}{2 a} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2 a}$$

Το ολοκλήρωμα του $$$\frac{1}{u}$$$ είναι $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$\frac{\ln{\left(\left|{a + x}\right| \right)}}{2 a} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2 a} = \frac{\ln{\left(\left|{a + x}\right| \right)}}{2 a} - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2 a}$$

Θυμηθείτε ότι $$$u=- a + x$$$:

$$\frac{\ln{\left(\left|{a + x}\right| \right)}}{2 a} - \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2 a} = \frac{\ln{\left(\left|{a + x}\right| \right)}}{2 a} - \frac{\ln{\left(\left|{{\color{red}{\left(- a + x\right)}}}\right| \right)}}{2 a}$$

Επομένως,

$$\int{\frac{1}{a^{2} - x^{2}} d x} = - \frac{\ln{\left(\left|{a - x}\right| \right)}}{2 a} + \frac{\ln{\left(\left|{a + x}\right| \right)}}{2 a}$$

Απλοποιήστε:

$$\int{\frac{1}{a^{2} - x^{2}} d x} = \frac{- \ln{\left(\left|{a - x}\right| \right)} + \ln{\left(\left|{a + x}\right| \right)}}{2 a}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{\frac{1}{a^{2} - x^{2}} d x} = \frac{- \ln{\left(\left|{a - x}\right| \right)} + \ln{\left(\left|{a + x}\right| \right)}}{2 a}+C$$

Απάντηση

$$$\int \frac{1}{a^{2} - x^{2}}\, dx = \frac{- \ln\left(\left|{a - x}\right|\right) + \ln\left(\left|{a + x}\right|\right)}{2 a} + C$$$A


Please try a new game Rotatly