$$$\frac{1}{a^{2} - x^{2}}$$$ 关于$$$x$$$的积分
您的输入
求$$$\int \frac{1}{a^{2} - x^{2}}\, dx$$$。
解答
进行部分分式分解:
$${\color{red}{\int{\frac{1}{a^{2} - x^{2}} d x}}} = {\color{red}{\int{\left(\frac{1}{2 a \left(a + x\right)} - \frac{1}{2 a \left(- a + x\right)}\right)d x}}}$$
逐项积分:
$${\color{red}{\int{\left(\frac{1}{2 a \left(a + x\right)} - \frac{1}{2 a \left(- a + x\right)}\right)d x}}} = {\color{red}{\left(- \int{\frac{1}{2 a \left(- a + x\right)} d x} + \int{\frac{1}{2 a \left(a + x\right)} d x}\right)}}$$
对 $$$c=\frac{1}{2 a}$$$ 和 $$$f{\left(x \right)} = \frac{1}{a + x}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$$- \int{\frac{1}{2 a \left(- a + x\right)} d x} + {\color{red}{\int{\frac{1}{2 a \left(a + x\right)} d x}}} = - \int{\frac{1}{2 a \left(- a + x\right)} d x} + {\color{red}{\left(\frac{\int{\frac{1}{a + x} d x}}{2 a}\right)}}$$
设$$$u=a + x$$$。
则$$$du=\left(a + x\right)^{\prime }dx = 1 dx$$$ (步骤见»),并有$$$dx = du$$$。
因此,
$$- \int{\frac{1}{2 a \left(- a + x\right)} d x} + \frac{{\color{red}{\int{\frac{1}{a + x} d x}}}}{2 a} = - \int{\frac{1}{2 a \left(- a + x\right)} d x} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2 a}$$
$$$\frac{1}{u}$$$ 的积分为 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- \int{\frac{1}{2 a \left(- a + x\right)} d x} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2 a} = - \int{\frac{1}{2 a \left(- a + x\right)} d x} + \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2 a}$$
回忆一下 $$$u=a + x$$$:
$$- \int{\frac{1}{2 a \left(- a + x\right)} d x} + \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2 a} = - \int{\frac{1}{2 a \left(- a + x\right)} d x} + \frac{\ln{\left(\left|{{\color{red}{\left(a + x\right)}}}\right| \right)}}{2 a}$$
对 $$$c=\frac{1}{2 a}$$$ 和 $$$f{\left(x \right)} = \frac{1}{- a + x}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$$- {\color{red}{\int{\frac{1}{2 a \left(- a + x\right)} d x}}} + \frac{\ln{\left(\left|{a + x}\right| \right)}}{2 a} = - {\color{red}{\left(\frac{\int{\frac{1}{- a + x} d x}}{2 a}\right)}} + \frac{\ln{\left(\left|{a + x}\right| \right)}}{2 a}$$
设$$$u=- a + x$$$。
则$$$du=\left(- a + x\right)^{\prime }dx = 1 dx$$$ (步骤见»),并有$$$dx = du$$$。
该积分可以改写为
$$\frac{\ln{\left(\left|{a + x}\right| \right)}}{2 a} - \frac{{\color{red}{\int{\frac{1}{- a + x} d x}}}}{2 a} = \frac{\ln{\left(\left|{a + x}\right| \right)}}{2 a} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2 a}$$
$$$\frac{1}{u}$$$ 的积分为 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\frac{\ln{\left(\left|{a + x}\right| \right)}}{2 a} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2 a} = \frac{\ln{\left(\left|{a + x}\right| \right)}}{2 a} - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2 a}$$
回忆一下 $$$u=- a + x$$$:
$$\frac{\ln{\left(\left|{a + x}\right| \right)}}{2 a} - \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2 a} = \frac{\ln{\left(\left|{a + x}\right| \right)}}{2 a} - \frac{\ln{\left(\left|{{\color{red}{\left(- a + x\right)}}}\right| \right)}}{2 a}$$
因此,
$$\int{\frac{1}{a^{2} - x^{2}} d x} = - \frac{\ln{\left(\left|{a - x}\right| \right)}}{2 a} + \frac{\ln{\left(\left|{a + x}\right| \right)}}{2 a}$$
化简:
$$\int{\frac{1}{a^{2} - x^{2}} d x} = \frac{- \ln{\left(\left|{a - x}\right| \right)} + \ln{\left(\left|{a + x}\right| \right)}}{2 a}$$
加上积分常数:
$$\int{\frac{1}{a^{2} - x^{2}} d x} = \frac{- \ln{\left(\left|{a - x}\right| \right)} + \ln{\left(\left|{a + x}\right| \right)}}{2 a}+C$$
答案
$$$\int \frac{1}{a^{2} - x^{2}}\, dx = \frac{- \ln\left(\left|{a - x}\right|\right) + \ln\left(\left|{a + x}\right|\right)}{2 a} + C$$$A