Intégrale de $$$\frac{1}{a^{2} - x^{2}}$$$ par rapport à $$$x$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \frac{1}{a^{2} - x^{2}}\, dx$$$.
Solution
Effectuer la décomposition en fractions partielles:
$${\color{red}{\int{\frac{1}{a^{2} - x^{2}} d x}}} = {\color{red}{\int{\left(\frac{1}{2 a \left(a + x\right)} - \frac{1}{2 a \left(- a + x\right)}\right)d x}}}$$
Intégrez terme à terme:
$${\color{red}{\int{\left(\frac{1}{2 a \left(a + x\right)} - \frac{1}{2 a \left(- a + x\right)}\right)d x}}} = {\color{red}{\left(- \int{\frac{1}{2 a \left(- a + x\right)} d x} + \int{\frac{1}{2 a \left(a + x\right)} d x}\right)}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=\frac{1}{2 a}$$$ et $$$f{\left(x \right)} = \frac{1}{a + x}$$$ :
$$- \int{\frac{1}{2 a \left(- a + x\right)} d x} + {\color{red}{\int{\frac{1}{2 a \left(a + x\right)} d x}}} = - \int{\frac{1}{2 a \left(- a + x\right)} d x} + {\color{red}{\left(\frac{\int{\frac{1}{a + x} d x}}{2 a}\right)}}$$
Soit $$$u=a + x$$$.
Alors $$$du=\left(a + x\right)^{\prime }dx = 1 dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = du$$$.
Ainsi,
$$- \int{\frac{1}{2 a \left(- a + x\right)} d x} + \frac{{\color{red}{\int{\frac{1}{a + x} d x}}}}{2 a} = - \int{\frac{1}{2 a \left(- a + x\right)} d x} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2 a}$$
L’intégrale de $$$\frac{1}{u}$$$ est $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$ :
$$- \int{\frac{1}{2 a \left(- a + x\right)} d x} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2 a} = - \int{\frac{1}{2 a \left(- a + x\right)} d x} + \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2 a}$$
Rappelons que $$$u=a + x$$$ :
$$- \int{\frac{1}{2 a \left(- a + x\right)} d x} + \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2 a} = - \int{\frac{1}{2 a \left(- a + x\right)} d x} + \frac{\ln{\left(\left|{{\color{red}{\left(a + x\right)}}}\right| \right)}}{2 a}$$
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=\frac{1}{2 a}$$$ et $$$f{\left(x \right)} = \frac{1}{- a + x}$$$ :
$$- {\color{red}{\int{\frac{1}{2 a \left(- a + x\right)} d x}}} + \frac{\ln{\left(\left|{a + x}\right| \right)}}{2 a} = - {\color{red}{\left(\frac{\int{\frac{1}{- a + x} d x}}{2 a}\right)}} + \frac{\ln{\left(\left|{a + x}\right| \right)}}{2 a}$$
Soit $$$u=- a + x$$$.
Alors $$$du=\left(- a + x\right)^{\prime }dx = 1 dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = du$$$.
Par conséquent,
$$\frac{\ln{\left(\left|{a + x}\right| \right)}}{2 a} - \frac{{\color{red}{\int{\frac{1}{- a + x} d x}}}}{2 a} = \frac{\ln{\left(\left|{a + x}\right| \right)}}{2 a} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2 a}$$
L’intégrale de $$$\frac{1}{u}$$$ est $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$ :
$$\frac{\ln{\left(\left|{a + x}\right| \right)}}{2 a} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2 a} = \frac{\ln{\left(\left|{a + x}\right| \right)}}{2 a} - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2 a}$$
Rappelons que $$$u=- a + x$$$ :
$$\frac{\ln{\left(\left|{a + x}\right| \right)}}{2 a} - \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2 a} = \frac{\ln{\left(\left|{a + x}\right| \right)}}{2 a} - \frac{\ln{\left(\left|{{\color{red}{\left(- a + x\right)}}}\right| \right)}}{2 a}$$
Par conséquent,
$$\int{\frac{1}{a^{2} - x^{2}} d x} = - \frac{\ln{\left(\left|{a - x}\right| \right)}}{2 a} + \frac{\ln{\left(\left|{a + x}\right| \right)}}{2 a}$$
Simplifier:
$$\int{\frac{1}{a^{2} - x^{2}} d x} = \frac{- \ln{\left(\left|{a - x}\right| \right)} + \ln{\left(\left|{a + x}\right| \right)}}{2 a}$$
Ajouter la constante d'intégration :
$$\int{\frac{1}{a^{2} - x^{2}} d x} = \frac{- \ln{\left(\left|{a - x}\right| \right)} + \ln{\left(\left|{a + x}\right| \right)}}{2 a}+C$$
Réponse
$$$\int \frac{1}{a^{2} - x^{2}}\, dx = \frac{- \ln\left(\left|{a - x}\right|\right) + \ln\left(\left|{a + x}\right|\right)}{2 a} + C$$$A