Integraali $$$\frac{1}{a^{2} - u^{2}}$$$:stä muuttujan $$$u$$$ suhteen

Laskin löytää funktion $$$\frac{1}{a^{2} - u^{2}}$$$ integraalin/kantafunktion muuttujan $$$u$$$ suhteen ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int \frac{1}{a^{2} - u^{2}}\, du$$$.

Ratkaisu

Hajota osamurtoihin:

$${\color{red}{\int{\frac{1}{a^{2} - u^{2}} d u}}} = {\color{red}{\int{\left(\frac{1}{2 a \left(a + u\right)} - \frac{1}{2 a \left(- a + u\right)}\right)d u}}}$$

Integroi termi kerrallaan:

$${\color{red}{\int{\left(\frac{1}{2 a \left(a + u\right)} - \frac{1}{2 a \left(- a + u\right)}\right)d u}}} = {\color{red}{\left(- \int{\frac{1}{2 a \left(- a + u\right)} d u} + \int{\frac{1}{2 a \left(a + u\right)} d u}\right)}}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=\frac{1}{2 a}$$$ ja $$$f{\left(u \right)} = \frac{1}{a + u}$$$:

$$- \int{\frac{1}{2 a \left(- a + u\right)} d u} + {\color{red}{\int{\frac{1}{2 a \left(a + u\right)} d u}}} = - \int{\frac{1}{2 a \left(- a + u\right)} d u} + {\color{red}{\left(\frac{\int{\frac{1}{a + u} d u}}{2 a}\right)}}$$

Olkoon $$$v=a + u$$$.

Tällöin $$$dv=\left(a + u\right)^{\prime }du = 1 du$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$du = dv$$$.

Näin ollen,

$$- \int{\frac{1}{2 a \left(- a + u\right)} d u} + \frac{{\color{red}{\int{\frac{1}{a + u} d u}}}}{2 a} = - \int{\frac{1}{2 a \left(- a + u\right)} d u} + \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2 a}$$

Funktion $$$\frac{1}{v}$$$ integraali on $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:

$$- \int{\frac{1}{2 a \left(- a + u\right)} d u} + \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2 a} = - \int{\frac{1}{2 a \left(- a + u\right)} d u} + \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{2 a}$$

Muista, että $$$v=a + u$$$:

$$- \int{\frac{1}{2 a \left(- a + u\right)} d u} + \frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{2 a} = - \int{\frac{1}{2 a \left(- a + u\right)} d u} + \frac{\ln{\left(\left|{{\color{red}{\left(a + u\right)}}}\right| \right)}}{2 a}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=\frac{1}{2 a}$$$ ja $$$f{\left(u \right)} = \frac{1}{- a + u}$$$:

$$- {\color{red}{\int{\frac{1}{2 a \left(- a + u\right)} d u}}} + \frac{\ln{\left(\left|{a + u}\right| \right)}}{2 a} = - {\color{red}{\left(\frac{\int{\frac{1}{- a + u} d u}}{2 a}\right)}} + \frac{\ln{\left(\left|{a + u}\right| \right)}}{2 a}$$

Olkoon $$$v=- a + u$$$.

Tällöin $$$dv=\left(- a + u\right)^{\prime }du = 1 du$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$du = dv$$$.

Integraali voidaan kirjoittaa muotoon

$$\frac{\ln{\left(\left|{a + u}\right| \right)}}{2 a} - \frac{{\color{red}{\int{\frac{1}{- a + u} d u}}}}{2 a} = \frac{\ln{\left(\left|{a + u}\right| \right)}}{2 a} - \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2 a}$$

Funktion $$$\frac{1}{v}$$$ integraali on $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:

$$\frac{\ln{\left(\left|{a + u}\right| \right)}}{2 a} - \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2 a} = \frac{\ln{\left(\left|{a + u}\right| \right)}}{2 a} - \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{2 a}$$

Muista, että $$$v=- a + u$$$:

$$\frac{\ln{\left(\left|{a + u}\right| \right)}}{2 a} - \frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{2 a} = \frac{\ln{\left(\left|{a + u}\right| \right)}}{2 a} - \frac{\ln{\left(\left|{{\color{red}{\left(- a + u\right)}}}\right| \right)}}{2 a}$$

Näin ollen,

$$\int{\frac{1}{a^{2} - u^{2}} d u} = - \frac{\ln{\left(\left|{a - u}\right| \right)}}{2 a} + \frac{\ln{\left(\left|{a + u}\right| \right)}}{2 a}$$

Sievennä:

$$\int{\frac{1}{a^{2} - u^{2}} d u} = \frac{- \ln{\left(\left|{a - u}\right| \right)} + \ln{\left(\left|{a + u}\right| \right)}}{2 a}$$

Lisää integrointivakio:

$$\int{\frac{1}{a^{2} - u^{2}} d u} = \frac{- \ln{\left(\left|{a - u}\right| \right)} + \ln{\left(\left|{a + u}\right| \right)}}{2 a}+C$$

Vastaus

$$$\int \frac{1}{a^{2} - u^{2}}\, du = \frac{- \ln\left(\left|{a - u}\right|\right) + \ln\left(\left|{a + u}\right|\right)}{2 a} + C$$$A


Please try a new game Rotatly