$$$\frac{1}{a^{2} - u^{2}}$$$ 對 $$$u$$$ 的積分
您的輸入
求$$$\int \frac{1}{a^{2} - u^{2}}\, du$$$。
解答
進行部分分式分解:
$${\color{red}{\int{\frac{1}{a^{2} - u^{2}} d u}}} = {\color{red}{\int{\left(\frac{1}{2 a \left(a + u\right)} - \frac{1}{2 a \left(- a + u\right)}\right)d u}}}$$
逐項積分:
$${\color{red}{\int{\left(\frac{1}{2 a \left(a + u\right)} - \frac{1}{2 a \left(- a + u\right)}\right)d u}}} = {\color{red}{\left(- \int{\frac{1}{2 a \left(- a + u\right)} d u} + \int{\frac{1}{2 a \left(a + u\right)} d u}\right)}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{2 a}$$$ 與 $$$f{\left(u \right)} = \frac{1}{a + u}$$$:
$$- \int{\frac{1}{2 a \left(- a + u\right)} d u} + {\color{red}{\int{\frac{1}{2 a \left(a + u\right)} d u}}} = - \int{\frac{1}{2 a \left(- a + u\right)} d u} + {\color{red}{\left(\frac{\int{\frac{1}{a + u} d u}}{2 a}\right)}}$$
令 $$$v=a + u$$$。
則 $$$dv=\left(a + u\right)^{\prime }du = 1 du$$$ (步驟見»),並可得 $$$du = dv$$$。
該積分變為
$$- \int{\frac{1}{2 a \left(- a + u\right)} d u} + \frac{{\color{red}{\int{\frac{1}{a + u} d u}}}}{2 a} = - \int{\frac{1}{2 a \left(- a + u\right)} d u} + \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2 a}$$
$$$\frac{1}{v}$$$ 的積分是 $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:
$$- \int{\frac{1}{2 a \left(- a + u\right)} d u} + \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2 a} = - \int{\frac{1}{2 a \left(- a + u\right)} d u} + \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{2 a}$$
回顧一下 $$$v=a + u$$$:
$$- \int{\frac{1}{2 a \left(- a + u\right)} d u} + \frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{2 a} = - \int{\frac{1}{2 a \left(- a + u\right)} d u} + \frac{\ln{\left(\left|{{\color{red}{\left(a + u\right)}}}\right| \right)}}{2 a}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{2 a}$$$ 與 $$$f{\left(u \right)} = \frac{1}{- a + u}$$$:
$$- {\color{red}{\int{\frac{1}{2 a \left(- a + u\right)} d u}}} + \frac{\ln{\left(\left|{a + u}\right| \right)}}{2 a} = - {\color{red}{\left(\frac{\int{\frac{1}{- a + u} d u}}{2 a}\right)}} + \frac{\ln{\left(\left|{a + u}\right| \right)}}{2 a}$$
令 $$$v=- a + u$$$。
則 $$$dv=\left(- a + u\right)^{\prime }du = 1 du$$$ (步驟見»),並可得 $$$du = dv$$$。
因此,
$$\frac{\ln{\left(\left|{a + u}\right| \right)}}{2 a} - \frac{{\color{red}{\int{\frac{1}{- a + u} d u}}}}{2 a} = \frac{\ln{\left(\left|{a + u}\right| \right)}}{2 a} - \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2 a}$$
$$$\frac{1}{v}$$$ 的積分是 $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:
$$\frac{\ln{\left(\left|{a + u}\right| \right)}}{2 a} - \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2 a} = \frac{\ln{\left(\left|{a + u}\right| \right)}}{2 a} - \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{2 a}$$
回顧一下 $$$v=- a + u$$$:
$$\frac{\ln{\left(\left|{a + u}\right| \right)}}{2 a} - \frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{2 a} = \frac{\ln{\left(\left|{a + u}\right| \right)}}{2 a} - \frac{\ln{\left(\left|{{\color{red}{\left(- a + u\right)}}}\right| \right)}}{2 a}$$
因此,
$$\int{\frac{1}{a^{2} - u^{2}} d u} = - \frac{\ln{\left(\left|{a - u}\right| \right)}}{2 a} + \frac{\ln{\left(\left|{a + u}\right| \right)}}{2 a}$$
化簡:
$$\int{\frac{1}{a^{2} - u^{2}} d u} = \frac{- \ln{\left(\left|{a - u}\right| \right)} + \ln{\left(\left|{a + u}\right| \right)}}{2 a}$$
加上積分常數:
$$\int{\frac{1}{a^{2} - u^{2}} d u} = \frac{- \ln{\left(\left|{a - u}\right| \right)} + \ln{\left(\left|{a + u}\right| \right)}}{2 a}+C$$
答案
$$$\int \frac{1}{a^{2} - u^{2}}\, du = \frac{- \ln\left(\left|{a - u}\right|\right) + \ln\left(\left|{a + u}\right|\right)}{2 a} + C$$$A