$$$\frac{1}{a^{2} - u^{2}}$$$ 关于$$$u$$$的积分

该计算器将求出$$$\frac{1}{a^{2} - u^{2}}$$$关于$$$u$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \frac{1}{a^{2} - u^{2}}\, du$$$

解答

进行部分分式分解:

$${\color{red}{\int{\frac{1}{a^{2} - u^{2}} d u}}} = {\color{red}{\int{\left(\frac{1}{2 a \left(a + u\right)} - \frac{1}{2 a \left(- a + u\right)}\right)d u}}}$$

逐项积分:

$${\color{red}{\int{\left(\frac{1}{2 a \left(a + u\right)} - \frac{1}{2 a \left(- a + u\right)}\right)d u}}} = {\color{red}{\left(- \int{\frac{1}{2 a \left(- a + u\right)} d u} + \int{\frac{1}{2 a \left(a + u\right)} d u}\right)}}$$

$$$c=\frac{1}{2 a}$$$$$$f{\left(u \right)} = \frac{1}{a + u}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$

$$- \int{\frac{1}{2 a \left(- a + u\right)} d u} + {\color{red}{\int{\frac{1}{2 a \left(a + u\right)} d u}}} = - \int{\frac{1}{2 a \left(- a + u\right)} d u} + {\color{red}{\left(\frac{\int{\frac{1}{a + u} d u}}{2 a}\right)}}$$

$$$v=a + u$$$

$$$dv=\left(a + u\right)^{\prime }du = 1 du$$$ (步骤见»),并有$$$du = dv$$$

因此,

$$- \int{\frac{1}{2 a \left(- a + u\right)} d u} + \frac{{\color{red}{\int{\frac{1}{a + u} d u}}}}{2 a} = - \int{\frac{1}{2 a \left(- a + u\right)} d u} + \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2 a}$$

$$$\frac{1}{v}$$$ 的积分为 $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:

$$- \int{\frac{1}{2 a \left(- a + u\right)} d u} + \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2 a} = - \int{\frac{1}{2 a \left(- a + u\right)} d u} + \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{2 a}$$

回忆一下 $$$v=a + u$$$:

$$- \int{\frac{1}{2 a \left(- a + u\right)} d u} + \frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{2 a} = - \int{\frac{1}{2 a \left(- a + u\right)} d u} + \frac{\ln{\left(\left|{{\color{red}{\left(a + u\right)}}}\right| \right)}}{2 a}$$

$$$c=\frac{1}{2 a}$$$$$$f{\left(u \right)} = \frac{1}{- a + u}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$

$$- {\color{red}{\int{\frac{1}{2 a \left(- a + u\right)} d u}}} + \frac{\ln{\left(\left|{a + u}\right| \right)}}{2 a} = - {\color{red}{\left(\frac{\int{\frac{1}{- a + u} d u}}{2 a}\right)}} + \frac{\ln{\left(\left|{a + u}\right| \right)}}{2 a}$$

$$$v=- a + u$$$

$$$dv=\left(- a + u\right)^{\prime }du = 1 du$$$ (步骤见»),并有$$$du = dv$$$

因此,

$$\frac{\ln{\left(\left|{a + u}\right| \right)}}{2 a} - \frac{{\color{red}{\int{\frac{1}{- a + u} d u}}}}{2 a} = \frac{\ln{\left(\left|{a + u}\right| \right)}}{2 a} - \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2 a}$$

$$$\frac{1}{v}$$$ 的积分为 $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:

$$\frac{\ln{\left(\left|{a + u}\right| \right)}}{2 a} - \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2 a} = \frac{\ln{\left(\left|{a + u}\right| \right)}}{2 a} - \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{2 a}$$

回忆一下 $$$v=- a + u$$$:

$$\frac{\ln{\left(\left|{a + u}\right| \right)}}{2 a} - \frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{2 a} = \frac{\ln{\left(\left|{a + u}\right| \right)}}{2 a} - \frac{\ln{\left(\left|{{\color{red}{\left(- a + u\right)}}}\right| \right)}}{2 a}$$

因此,

$$\int{\frac{1}{a^{2} - u^{2}} d u} = - \frac{\ln{\left(\left|{a - u}\right| \right)}}{2 a} + \frac{\ln{\left(\left|{a + u}\right| \right)}}{2 a}$$

化简:

$$\int{\frac{1}{a^{2} - u^{2}} d u} = \frac{- \ln{\left(\left|{a - u}\right| \right)} + \ln{\left(\left|{a + u}\right| \right)}}{2 a}$$

加上积分常数:

$$\int{\frac{1}{a^{2} - u^{2}} d u} = \frac{- \ln{\left(\left|{a - u}\right| \right)} + \ln{\left(\left|{a + u}\right| \right)}}{2 a}+C$$

答案

$$$\int \frac{1}{a^{2} - u^{2}}\, du = \frac{- \ln\left(\left|{a - u}\right|\right) + \ln\left(\left|{a + u}\right|\right)}{2 a} + C$$$A


Please try a new game Rotatly